首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   6篇
  国内免费   43篇
安全科学   6篇
废物处理   2篇
环保管理   8篇
综合类   46篇
基础理论   5篇
污染及防治   31篇
灾害及防治   4篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   8篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   5篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有102条查询结果,搜索用时 46 毫秒
81.
基于AHP-PROMETHEE Ⅱ法的鸟粪石磷回收污泥预处理方案决策   总被引:1,自引:1,他引:0  
刘晓蕾  李安婕 《环境科学》2020,41(8):3725-3730
磷是一种不可再生资源,采用鸟粪石沉淀法回收剩余污泥中磷已有工程应用.但目前用于释放剩余污泥中碳氮磷便于后续回收的方案很多,不同方案对后续鸟粪石磷回收的影响不同.为了有助于剩余污泥磷回收工艺的决策,本研究以鸟粪石磷回收为目标,选取6种常见的剩余污泥处理方案,构建3层6指标的决策层次分析结构,运用PROMETHEEⅡ偏好关系排序方法,对6种污泥处理方案进行整体评价,从产品品质优先和时间经济优先两个角度出发,选择综合效益最高的方案.在产品品质优先条件下,酶水解以及酶-厌氧处理工艺最优;在时间经济优先条件下,热水解以及热-厌氧处理工艺最优.本研究为通过鸟粪石沉淀法回收剩余污泥中的磷,提供了方案参考以及有效的方案选择办法.  相似文献   
82.
为了从污染水体中去除磷并有效回收磷资源,本文研究了海绵铁改性前后吸附除磷特性,并构建海绵铁除磷渗滤床,考察了其连续流除磷特性及再生活化方法,并探究再生废液中磷回收生成鸟粪石的工艺条件.结果表明:硫酸改性后的海绵铁对磷的最大理论吸附容量从改性前4.17 mg·g~(-1)提升至18.18 mg·g~(-1).吸附饱和的改性海绵铁,采用1 mol·L~(-1)氢氧化钠解吸和6%硫酸再活化后,能够达到98%的活化率.海绵铁除磷渗滤床在长达约200 d的连续流运行实验中表现出良好的除磷能力,在进水TP=10 mg·L~(-1),HRT=1 h条件下,磷综合去除率达30%~89%,累积单位容积磷吸附量达到6.95 kg·m~(-3).海绵铁碱再生后的废液可以用于回收鸟粪石,其最佳生成条件为:pH=10,n(Mg~(2+))∶n(PO_4~(3-))∶n(NH~+_4)=1.3∶1∶1.1.在最优条件下,磷回收率可以达到97.8%.本研究提供的方法对于污染水体中磷营养元素的去除及回收利用具有理论与实践意义.  相似文献   
83.
使用化学平衡软件Visual MINTEQ计算拟合鸟粪石(磷酸镁铵,MgNH4PO4·6H2O,MAP)沉淀去除氨氮的平衡体系在不同pH值条件下Mg2+、NH4+和PO34-各组分的变化及饱和指数(SI)的变化.实验和预测结果表明,模型对MAP沉淀平衡体系拟合良好.在本研究的pH值范围内(8.0—11.0),化学平衡模型VisualMINTEQ能预测敞开体系氨氮废水中通过磷酸铵镁沉淀去除的NH4+-N,但不能用来预测敞开体系中所有氨氮的去除,即预测结果中不包括由于氨气挥发而去除的氨氮.  相似文献   
84.
分析废水中Ca2+对鸟粪石结晶法回收产物沉淀的影响。观察不同Ca、Mg物质的量配比n(Ca)∶n(Mg),不同起始磷浓度条件下磷回收产物在Inhoff管中的沉淀过程,测定总磷及溶解性磷的去除效率;同时利用扫描电镜(SEM)观察产物微观尺寸及形态、利用X射线衍射仪(XRD)、元素分析法分析沉淀物组成,联系沉淀过程分析Ca2+对磷回收产物固液分离的过程及其效率的影响。随着Ca2+的增加,上清液中溶解性磷(DP)与总磷(TP)去除率之差由1%逐渐增大到10%以上;沉淀产物颗粒尺寸由25μm左右减小至5μm甚至更小,最终失去晶体形态;沉淀产物中鸟粪石含量逐渐降低、钙磷沉淀比例逐渐增多。随着Ca2+的增加,沉淀过程有明显的变化,上清液中颗粒磷逐渐增多,且产物中鸟粪石含量逐渐减小,总磷回收率下降;而在n(Ca)∶n(Mg)<0.3时,中、低浓度的含磷废水的回收产物仍然以鸟粪石为主。  相似文献   
85.
加拿大的一家公司(Ostara Nutrient Recovery Technologies Inc.)为了验证由英国哥伦比亚大学(UBC)开发的鸟粪石回收技术,建造了首个大型反应器。该反应器坐落于加拿大埃德蒙顿市的GoldBar污泥处理厂,造价达700000欧元。它将每天处理500m^3的污泥沉淀上层清液,预计将去除75%~95%的磷。如果该试验成功,Ostara公司计划投资1.8亿欧元,建造一座拥有5个工业级反应器的工厂,日处理能力为2500m^3,每年可以鸟粪石的形式回收1000t以上的磷盐。  相似文献   
86.
鸟粪石沉淀法可以在搅拌反应器中回收尿液中的磷,而水力停留时间和搅拌速率对鸟粪石晶体的形成有重要影响.因此,本文在搅拌反应器中通过分批实验研究了水力停留时间(0.5、1.0和2.0 h)和搅拌速率(80、160和320 r·min-1)对尿液中磷的回收率和鸟粪石晶体粒径的影响.结果表明,水力停留时间从0.5 h增至2 h时,磷回收率从88.9%增至95.4%,而鸟粪石晶体平均粒径从124.4μm下降为71.2μm.随搅拌速率从80 r·min-1增至320 r·min-1,磷回收率从88.7%增至93.4%,而鸟粪石晶体平均粒径从37.0μm增至78.9μm.较短的水力停留时间和较高的搅拌速率更有利于大粒径的鸟粪石晶体形成,但对磷回收率影响有限.搅拌速率为160 r·min-1时,鸟粪石回收率最高为78.7%,可以得到纯度很高的鸟粪石晶体,而较高和较低的搅拌速率都不利于提高鸟粪石回收率.  相似文献   
87.
载镁天然沸石复合材料对污水中氮磷的同步回收   总被引:4,自引:3,他引:1  
成雪君  王学江  王浩  张志昊  赵建夫 《环境科学》2017,38(12):5139-5145
采用载镁天然沸石为沉淀剂,以鸟粪石的形式回收模拟污水中的营养物质,考察了投加量、溶液pH、反应时间和共存Ca~(2+)对回收过程的影响,并利用FTIR、XRD、BET和SEM等手段对回收沉淀产物进行了化学组分和表面形貌分析,以揭示其回收机制.结果表明当材料投加量为0.4 g·L~(-1),溶液初始pH为7,反应时间为2 h时,载镁天然沸石对溶液中磷酸盐和氨氮的回收性能最佳,最大吸附量分别高达119.2 mg·g~(-1)和48.5 mg·g~(-1).载镁天然沸石对溶液中磷酸盐和氨氮的回收过程均符合拟二级动力学模型(R~20.99).载镁天然沸石对污水中营养物质的回收机制有鸟粪石化学沉淀、物理吸附、离子交换和静电吸附等,其中以鸟粪石沉淀法为主.共存Ca~(2+)会干扰载镁沸石对溶液中氮磷的同步回收,导致回收的沉淀组分除鸟粪石晶体外,还会存在部分磷酸钙等副产物.  相似文献   
88.
磷回收技术的研发现状及发展趋势   总被引:18,自引:6,他引:12  
磷是地球上一种不可自然再生的有限资源,磷的这一属性近年来已诱使国际磷矿石价格一路飙升,较10年前翻了6番.与此同时,全球范围内普遍存在着陆地磷矿产资源日益匮乏与水环境中磷含量过高而导致水体富营养化这一矛盾.这样的资源与环境现状目前正推动着以"回收"磷代替"去除"磷之理念的快速传播与研发技术的实际应用;从污水以及动物粪尿中发掘"第二磷矿"的设想目前正被国际社会所日益青睐.2009年5月"第4届从污水中回收营养物国际会议"高度浓缩了当今世界有关磷回收技术的研发与应用现状.以此次会议内容为主线,结合其他方面最新研究与应用成果,首先对磷回收偏爱产物——鸟粪石形成的pH等重要反应条件之基础性研究成果进行了概述.其次,详细阐述了磷回收技术的研发进展,除传统的化学沉淀、结晶、吸附/解吸附等方法外,还着重介绍了尿液源分离、MBR、纳米技术、丝状聚磷微生物、生物浸取/生物富集、生物铁工艺等新型磷回收技术,以及动物粪尿磷回收、污泥及肉骨焚烧灰回收磷与生物质磷回收技术.最后,以实例说明磷回收产物在农业和水产养殖业方面的尝试效果,并对磷回收未来技术发展趋势进行了宏观展望.  相似文献   
89.
本研究以实验室模拟的高浓度氮磷废水为研究对象,采用折流式反应器,探讨了在动态条件下,pH、Mg:P、N:P及水力停留时间对鸟粪石法脱氮除磷的影响。试验结果表明:对于氨氮的去除率,以上四个因素影响相当;对于磷的除率,各因素的影响大小为:N:P〉pH〉Mg:P〉水力停留时间。当模拟水样中的TP浓度为310mg/l,pH为9.7,水力停留时间为60min,Mg:N:P=1.2:1.2:l时,氨氮和磷的去除率分别可高迭85.8%和86.3%。  相似文献   
90.
鸟粪石-沸石复合材料对水中镉的吸附性能研究   总被引:2,自引:0,他引:2  
研究以氧化镁负载沸石回收污水中氮磷得到的鸟粪石-沸石复合材料(STR-NZ)为吸附剂,用于对水体中重金属镉的吸附去除.实验采用SEM-EDS、XRD和FTIR等手段对STR-NZ材料进行表征,并考察了投加量、初始pH和反应时间等对STR-NZ材料去除水中Cd~(2+)的影响.结果表明:氧化镁负载沸石材料主要以鸟粪石沉淀的方式实现对水中磷酸盐和氨氮的回收;STR-NZ对水溶液中Cd~(2+)的吸附量随pH的增大呈先增加后趋于平衡的趋势,当Cd~(2+)的初始浓度为50 mg·L~(-1)时,STR-NZ的最佳投加量为0.2 g·L~(-1),Cd~(2+)最大吸附量为249.35 mg·g~(-1), STR-NZ对Cd~(2+)的吸附动力学符合准二级动力学模型,对Cd~(2+)的等温吸附符合Langmuir等温吸附模型,STR-NZ主要通过Cd_5(PO_4)_3(OH)沉淀的方式实现对水中Cd~(2+)的去除.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号