首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   5篇
  国内免费   9篇
安全科学   410篇
废物处理   5篇
环保管理   54篇
综合类   35篇
基础理论   47篇
污染及防治   16篇
评价与监测   8篇
社会与环境   3篇
灾害及防治   30篇
  2023年   10篇
  2022年   10篇
  2021年   28篇
  2020年   33篇
  2019年   13篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   20篇
  2014年   22篇
  2013年   18篇
  2012年   13篇
  2011年   35篇
  2010年   33篇
  2009年   34篇
  2008年   20篇
  2007年   25篇
  2006年   18篇
  2005年   20篇
  2004年   25篇
  2003年   17篇
  2002年   15篇
  2001年   14篇
  2000年   14篇
  1999年   26篇
  1998年   19篇
  1997年   10篇
  1996年   18篇
  1995年   15篇
  1994年   11篇
  1993年   8篇
  1992年   8篇
  1991年   2篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   6篇
  1978年   2篇
  1977年   1篇
排序方式: 共有608条查询结果,搜索用时 15 毫秒
601.
Currently, China's timber industry is in high demand with the development of real estate. However, there is a certain fire hazard in the production process of wood manufacturing. Once a fire occurs, the fire is violent and the spread is rapid. Therefore, to improve the safety of its production process, ammonium dihydrogen phosphate and magnesium hydroxide were selected to prepare a new composite superfine dry powder, which was denoted as the NH4H2PO4/Mg(OH)2 composite. Furthermore, to figure out dry powders' extinction effect on Class A fire, the wood-crib fire suppression effect of the NH4H2PO4/Mg(OH)2 composite was test, and then compared with that of ultrafine dry powder (UDP) and commercial ABC dry powder (C-ABC) in a 1 m³ chamber. Three parameters of the fire extinguishing process, namely flame extinction time, powder consumption and temperature drop were adopted to measure the fire suppression performance. The results demonstrated that UDP and C-ABC both had a larger flame extinction time and powder consumption than the NH4H2PO4/Mg(OH)2 composite. Besides, a fire (wood cribs) can be extinguished by the NH4H2PO4/Mg(OH)2 composite with the fastest temperature drop and a much-improved toxic gas suppression ability. In short, the NH4H2PO4/Mg(OH)2 composite can better guarantee the safety of the wood processing production process. Moreover, the reasons for performance advantages of the NH4H2PO4/Mg(OH)2 composite were discussed.  相似文献   
602.
Fire is the most commonly occurring major accident hazard in the chemical and process industries, with industry accident statistics highlighting the liquid pool fire as the most frequent fire event. Modelling of such phenomena feeds heavily into industry risk assessment and consequence analyses. Traditional simple empirical equations cannot account for the full range of factors influencing pool fire behaviour or increasingly complex plant design. The use of Computational Fluid Dynamics (CFD) modelling enables a greater understanding of pool fire behaviour to be gained numerically and provides the capability to deal with complex scenarios.This paper presents an evaluation of the Fire Dynamics Simulator (FDS) for predictive modelling of liquid pool fire burning rates. Specifically, the work examines the ability of the model to predict temporal variations in the burning rate of open atmosphere pool fires. Fires ranging from 0.4 to 4 m in diameter, involving ethanol and a range of liquid hydrocarbons as fuels, are considered and comparisons of predicted fuel mass loss rates are compared to experimental measurements.The results show that the liquid pyrolysis sub-model in FDS gives consistent model performance for fully predictive modelling of liquid pool fire burning rates, particularly during quasi-steady burning. However, the model falls short of predicting the subtleties associated with each phase of the transient burning process, failing to reliably predict fuel mass loss rates during fire growth and extinction. The results suggest a range of model modifications which could lead to improved prediction of the transient fire growth and extinction phases of burning for liquid pool fires, specifically, investigation of: ignition modelling techniques for high boiling temperature liquid fuels; a combustion regime combining both infinite and finite-rate chemistry; a solution method which accounts for two- or three-dimensional heat conduction effects in the liquid-phase; alternative surrogate fuel compositions for multi-component hydrocarbon fuels; and modification of the solution procedure used at the liquid-gas interface during fire extinction.  相似文献   
603.
The minimum ignition temperature of dust suspension (MIT) and the hot surface ignition temperature of the dust layer (LIT) are essential safety parameters for the process industry. However, the knowledge of the ignition behavior when solid mixtures of flammable fuels and phosphorous-free inhibitors are considered is still scarce and further experimental and theoretical analyses are requested. In this work, the ignition temperature of phosphorous-free inhibitors (coal fly ash and calcium carbonate) mixed with lycopodium dust have been studied in terms of LIT analysis (hot plate thickness: 5 mm, 12.5 mm and 15 mm), and by the Godbert-Greenwald test for the MIT. Both coal fly ash and calcium carbonate have been tested at different concentrations and particle sizes.Results show that the effects of the inhibitor can be counter-productive when layer ignition temperature is considered even if the minimum ignition temperature of the dust suspension shows a positive effect from the safety point of view. This behavior has been analyzed in the terms of thermal conductivity and diffusivity of the mixture, by using Maxwell's equation for two-phase solid mixtures. Standard empirical correlations for the ignition temperature of solid mixtures have been also tested, showing their weakness in reproducing mixture behavior.  相似文献   
604.
Ammonium nitrate is used in vast amounts globally, first and foremost as a component of fertilizers and explosive formulations. This usage necessitates its transportation which, as for most hazardous materials, involves certain risks. For oxidizing materials such as ammonium nitrate, the ultimate consequence of road transportation incidents is usually considered to be fire followed by explosion. Even though the probability in general is low, substantial reduction in its risk is a great gain for public safety. Thus, identifying novel and improving current safety measures for risk reduction, is an important aspect in the field of hazardous materials. Herein, a series of experiments are reported, which demonstrate the fire protection performance of two state-of-the-art intumescent passive fire protection materials on small-scale metal test tubes containing ammonium nitrate. Albeit being initial experiments on laboratory-scale, these results provide a promising starting point for further investigations on the potential of these materials for the fire protection of ammonium nitrate when carried in metal tanks. At its best, a prominent protection of ammonium nitrate from heat exposure was observed, as the temperature was kept well below its boiling point for more than 2.5 h. Successively, it resulted in a complete recovery of the sample material. This was in large contrast to the observed results for the unprotected test tubes, which led to complete decomposition of the sample after 11 min.  相似文献   
605.
Pine–oak forests are of high ecological importance worldwide, but many are threatened by uncharacteristically severe wildfire. Forest restoration treatments, including the reintroduction of a surface fire regime, are intended to decrease fire hazard and emulate historic ecosystem structure and function. Restoration has recently received much management attention and short-term study, but little is known about longer-term ecosystem responses. We remeasured a replicated experimental restoration site in the southwestern United States 5 years after treatments. Basal area, tree density, and canopy cover decreased in the treated units at a faster rate than in controls. Delayed mortality, not evident right after treatment, decreased density modestly (13% in treated units and 10% in controls) but disproportionately affected large trees (“large” ponderosa pines were those with diameter at breast height [dbh] ≥37.5 cm; other species dbh ≥20 cm). In treated units, 10.9 large trees ha–1 died, whereas 6.2 trees ha–1 died in control units. Compared with reference conditions, the experimental blocks remained higher in pine density and, in three of the four blocks, in basal area. Pine trees grew significantly faster in treated units than in controls, enough to reach the reference level of basal area in 6 years. Although mortality of large trees is a concern, the treated units have vigorous growth and low density, indicating that they will be relatively resistant to future drought and fire events. Similar treatments may be beneficial in many areas of the United States and in related pine-oak ecosystems elsewhere.  相似文献   
606.
不同来流下火旋风的实验研究   总被引:1,自引:0,他引:1  
已有的实验研究和数值模拟表明:火旋风存在一种中空燃烧的状态.本文通过燃烧风洞,对不同来流影响下的火旋风进行分析研究.通过一个置于大型燃烧风洞中的边角开有切向进风口的六边形小尺寸火旋风发生模型,应用热电偶测温和皮托管测速以及电子数据采集系统,对该模型内的温度分布数据和速度分布数据进行采集.通过燃烧风洞改变来流速度的大小,分析不同来流速度下火旋风内部的温度分布、速度分布和持续时间,研究来流速度对火旋风内部燃烧结构的影响、火旋风旋转速度的影响以及持续时间的影响.研究表明:来流改变了火旋风内部的燃烧结构,促进了中空燃烧状态的形成.中空燃烧状态有一个中心的低温区域.在中心低温区域温度最低时,火旋风持续时间最长.来流增强了火旋风的整体转动,并且加剧了火旋风的螺旋状上升.  相似文献   
607.
Accidental subsea gas releases can pose a threat to people, equipment, and facilities since gas can be toxic or flammable at the concentrations in which the leak occurs. The accurate prediction of the behavior of the gas plume formed in the leaks can be fundamental to the development of techniques of accident prevention or, in some cases, remediation measures, avoiding the emergence of more serious consequences. Among the different ways to analyze the behavior of gas plumes formed underwater, the Computational Fluid Dynamics (CFD) tool stands out for allowing the study of plume behavior to be done in a safer, simpler, and less expensive way, if compared to experimental studies. Inspired by the accidental release of the subsea gas scenario, this work validated a CFD setup of a 2D two-phase air–water flow using the VOF method in Ansys Fluent. The use of the VOF method differs this work from other works that use a hybrid Eulerian–Lagrangian methodology to model such types of flow. In this validation, simulations with a 9 m base tank, and 7 m water depth, and 0.050, 0.100, and 0.450 m3/s gas flow were performed. The simulated data were compared to experimental results available in literature. After the validation of the setup, a study was carried out varying the size of the leak to 0.24 and 0.17 m, and the gas flow from 0.006 to 0.150 m3/s aiming to verify how some plume characteristics are affected by the changes. Finally, following the directions from literature for analyzing the ascending gas behavior, and combining it with a dimensional analysis of the data, we proposed a mathematical model for calculating the gas ascending time using only properties of the gas leak. With future modifications of the proposed methodology, we hope that soon it will be possible to simulate gas releases under more realistic conditions. Even so, the findings of this work are already a significant step forward in the study of underwater gas releases.  相似文献   
608.
龙玟蒽  姚斌 《火灾科学》2021,30(1):30-37
古商业街木结构建筑较多,防火间距先天不足,发生火灾后蔓延迅速,有必要开展木结构建筑引燃特性研究以获得合理的防火间距设置参数.以古商业街为研究对象,以临界温度和热辐射强度作为着火建筑对面木结构建筑被引燃的判定指标,综合考虑环境风速、建筑间距、火源功率、喷淋系统等因素,运用火灾动力学模拟软件FDS分析系列火灾场景下的温度和...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号