首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   2篇
  国内免费   22篇
安全科学   5篇
废物处理   17篇
环保管理   67篇
综合类   60篇
基础理论   97篇
环境理论   1篇
污染及防治   103篇
评价与监测   8篇
社会与环境   19篇
灾害及防治   19篇
  2023年   6篇
  2022年   10篇
  2021年   11篇
  2020年   3篇
  2019年   8篇
  2018年   7篇
  2017年   6篇
  2016年   9篇
  2015年   9篇
  2014年   19篇
  2013年   34篇
  2012年   16篇
  2011年   40篇
  2010年   20篇
  2009年   50篇
  2008年   30篇
  2007年   16篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   7篇
  1985年   2篇
  1984年   2篇
  1977年   1篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
271.
As opposed to mesophilic, thermophilic anaerobic digestion of food waste can increase the biogas output of reactors. To facilitate the transition of anaerobic digesters, this paper investigated the impact of adapting mesophilic sludge to thermophilic conditions. A 5L bench scale reactor was seeded with mesophilic granular sludge obtained from an up-flow anaerobic sludge blanket digester. After 13 days of operation at 35 degrees C, the reactor temperature was instantaneously increased to 55 degrees C and operated at this temperature until day 21. The biomass was then fed food waste on days 21, 42 and 63, each time with an F/M (Food/Microorganism) ratio increasing from 0.12 to 4.43 gVS/gVSS. Sludge samples were collected on days 0, 21, 42 and 63 to conduct substrate activity tests, and reactor biogas production was monitored during the full experimental period. The sludge collected on day 21 demonstrated that the abrupt temperature change had no pasteurization effect, but rather lead to a biomass with a fermentative activity of 3.58 g Glucose/gVSS/d and a methanogenic activity of 0.47 and 0.26 g Substrate/gVSS/d, related respectively, to acetoclastic and hydrogenophilic microorganisms. At 55 degrees C, an ultimate gas production (Go) and a biodegradation potential (Bo) of 0.2-1.4 L(STP)/gVS(fed) and of 0.1-0.84 L(STP) CH(4)/gVS(fed) were obtained, respectively. For the treatment of food waste, a fully adapted inoculum was developed by eliminating the initial time-consuming acclimatization stage from mesophilic to thermophilic conditions. The feeding stage was initiated within 20 days, but to increase the population of thermophilic methanogenic microorganisms, a substrate supply program must be carefully observed.  相似文献   
272.
The development of approaches to estimate the vulnerability of biological communities and ecosystems to extirpations and reductions of species is a central challenge of conservation biology. One key aim of this challenge is to develop quantitative approaches to estimate and rank interaction strengths and keystoneness of species and functional groups, i.e. to quantify the relative importance of species. Network analysis can be a powerful tool for this because certain structural aspects of ecological networks are good indicators of the mechanisms that maintain co-evolved, biotic interactions. A static view of ecological networks would lead us to focus research on highly-central species in food webs (topological key players in ecosystems). There are a variety of centrality indices, developed for several types of ecological networks (e.g. for weighted and un-weighted webs). However, truly understanding extinction and its community-wide effects requires the use of dynamic models. Deterministic dynamic models are feasible when population sizes are sufficiently large to minimize noise in the overall system. In models with small population sizes, stochasticity can be modelled explicitly. We present a stochastic simulation-based ecosystem model for identification of “dynamic key species” in situations where stochastic models are appropriate. To demonstrate this approach, we simulated ecosystem dynamics and performed sensitivity analysis using data from the Prince William Sound, Alaska ecosystem model. We then compare these results to those of purely topological analyses and deterministic dynamic (Ecosim) studies. We present the relationships between various topological and dynamic indices and discuss their biological relevance. The trophic group with the largest effect on others is nearshore demersals, the species mostly sensitive to others is halibut, and the group of both considerable effect on and sensitivity to others is juvenile herring. The most important trophic groups in our dynamical simulations appear to have intermediate trophic levels.  相似文献   
273.
Replicate mass-balanced solutions to Ecopath models describing carbon-based trophic structures and flows were developed for the Lake Ontario offshore food web before and after invasion-induced disruption. The food webs link two pathways of energy and matter flow: the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (bacteria-protozoans) and include 19 species-groups and three detrital groups. Mass-balance was achieved by using constrained optimization techniques to randomly vary initial estimates of biomass and diet composition. After the invasion, production declined for all trophic levels and species-groups except Chinook salmon. The trophic level (TL) increased for smelt, adult sculpin, adult alewife and Chinook salmon. Changes to ecotrophic efficiencies indicate a reduction in phytoplankton grazing, increased predation pressure on Mysis, adult smelt and alewife and decreased predation pressure on protozoans. Specific resource to consumer TTE changed; increasing for protozoans (8.0-11.5%), Mysis (0.6-1.0%), and Chinook salmon (1.0-2.3%) and other salmonines (0.4-0.5%) and decreasing for zooplankton (20.2-15.1%), prey-fish (9.7-8.8%), and benthos (1.7-0.6%). Direct trophic influences of recent invasive species were low. The synchrony of the decline in PP and species-group production indicates strong bottom-up influence. Mass balance required an increase of two to threefold in lower trophic level biomass and production, confirming a previously observed paradoxical deficit in lower trophic level production. Analysis of food web changes suggest hypotheses that may apply to other similar large pelagic systems including, (1) as pelagic primary productivity declines, overgrazing of zooplankton results in an increase in protozoan production and a loss of trophic transfer efficiency, (2) habitat and food web changes increased Mysis predation on Diporeia and contributed to their recent decline, and (3) production of Chinook salmon, the primary piscivore, was uncoupled from pelagic production processes. This study demonstrates the value of food web models to better understand the impact of invasive species and to develop novel hypotheses concerning trophic influences.  相似文献   
274.
Indirect effects are powerful influences in ecosystems that may maintain species diversity and alter apparent relationships between species in surprising ways. Here, we applied network environ analysis to 50 empirically-based trophic ecosystem models to test the hypothesis that indirect flows dominate direct flows in ecosystem networks. Further, we used Monte Carlo based perturbations to investigate the robustness of these results to potential error in the underlying data. To explain our findings, we further investigated the importance of the microbial food web in recycling energy-matter using components of the Finn Cycling Index and analysis of environ centrality. We found that indirect flows dominate direct flows in 37/50 (74.0%) models. This increases to 31/35 (88.5%) models when we consider only models that have cycling structure and a representation of the microbial food web. The uncertainty analysis reveals that there is less error in the I/D values than the ±5% error introduced into the models, suggesting the results are robust to uncertainty. Our results show that the microbial food web mediates a substantial percentage of cycling in some systems (median = 30.2%), but its role is highly variable in these models, in agreement with the literature. Our results, combined with previous work, strongly suggest that indirect effects are dominant components of activity in ecosystems.  相似文献   
275.
A new understanding of the consequences of how ecosystem elements are interconnected is emerging from the development and application of Ecological Network Analysis. The relative importance of indirect effects is central to this understanding, and the ratio of indirect flow to direct flow (I/D) is one indicator of their importance. Two methods have been proposed for calculating this indicator. The unit approach shows what would happen if each system member had a unit input or output, while the realized technique determines the ratio using the observed system inputs or outputs. When using the unit method, the input oriented and output oriented ratios can be different, potentially leading to conflicting results. However, we show that the input and output oriented I/D ratios are identical using the realized method when the system is at steady state. This work is a step in the maturation of Ecological Network Analysis that will let it be more readily testable empirically and ultimately more useful for environmental assessment and management.  相似文献   
276.
Livelihood diversification has become an integral focus of policies and investments aiming to reduce poverty, vulnerability, and pressure on fishery resources in coastal communities around the globe. In this regard, coastal fisheries in the Pacific Islands have long been a sector where livelihood diversification has featured prominently. Yet, despite the widespread promotion and international investment in this strategy, the ability of externally funded livelihood diversification projects to facilitate improved resource management and rural development outcomes often remains inconsistent. We argue these inconsistencies can be attributed to a conceptual ambiguity stemming from a lack of attention and awareness to the complexity of livelihood diversification. There is still much to learn about the process of livelihood diversification, both in its theoretical conceptualizations and its practical applications. Herein, we utilize a common diversity framework to clarify some of this ambiguity by distinguishing three diversification pathways. These pathways are illustrated using an ideal–typical Pacific Island coastal household and supported by examples provided in the literature that detail livelihood diversification projects in the Pacific. Through this perspective, we seek a more nuanced understanding of what is meant within the policy and practice goal of livelihood diversification. Thereby enabling more targeted and deliberate planning for development investments that facilitates outcomes in support of sustainable livelihoods.  相似文献   
277.
用食物供给量与生产量分别表示食物的可及性与自给率,其差值可表示食物贸易量,以人均每天卡路里为单位进行的折算可以更好地反映膳食营养的变化。从食物贸易视角分析了28年来食物供需平衡状况,结果表明:(1)1986—2013年,全球食物贸易量增加1.5倍;食物总产量增加0.75倍,贸易量在总产量中的比例增加约8个百分点,相当于7.9×108t食物进入国际市场,这成为改善膳食结构的重要因素。(2)28年来,食物可及性与自给率呈上升趋势,全球绝大部分人口已经达到最低2200 kal的营养标准。(3)食物可及性、自给率、贸易量均存在地域差异,非洲及南亚的部分国家是低值地区。(4)总体来看,全球人均每天热量与蛋白质供给量增加。低收入国家增速最快,中等收入国家增速次之,高收入国家增速最慢。但非洲、东南亚等地的一些欠发达国家仍未达到最低的营养标准,全球仍有一部分人处于营养不良状态。  相似文献   
278.
In a previous paper (Nahman et al., 2012), the authors estimated the costs of household food waste in South Africa, based on the market value of the wasted food (edible portion only), as well as the costs of disposal to landfill. In this paper, we extend the analysis by assessing the costs of edible food waste throughout the entire food value chain, from agricultural production through to consumption at the household level. First, food waste at each stage of the value chain was quantified in physical units (tonnes) for various food commodity groups. Then, weighted average representative prices (per tonne) were estimated for each commodity group at each stage of the value chain. Finally, prices were multiplied by quantities, and the resulting values were aggregated across the value chain for all commodity groups. In this way, the total cost of food waste across the food value chain in South Africa was estimated at R61.5 billion per annum (approximately US$7.7 billion); equivalent to 2.1% of South Africa’s annual gross domestic product. The bulk of this cost arises from the processing and distribution stages of the fruit and vegetable value chain, as well as the agricultural production and distribution stages of the meat value chain. These results therefore provide an indication of where interventions aimed at reducing food waste should be targeted.  相似文献   
279.
Anaerobic digestion of autoclaved (160 °C, 6.2 bar) and untreated source segregated food waste (FW) was compared over 473 days in semi-continuously fed mesophilic reactors with trace elements supplementation, at organic loading rates (OLRs) of 2, 3, 4 and 6 kg volatile solids (VS)/m3 d. Methane yields at all OLR were 5–10% higher for untreated FW (maximum 0.483 ± 0.013 m3 CH4/kg VS at 3 kg VS/m3 d) than autoclaved FW (maximum 0.439 ± 0.020 m3 CH4/kg VS at 4 kg VS/m3 d). The residual methane potential of both digestates at all OLRs was less than 0.110 m3 CH4/kg VS, indicating efficient methanation in all cases. Use of acclimated inoculum allowed very rapid increases in OLR. Reactors fed on autoclaved FW showed lower ammonium and hydrogen sulphide concentrations, probably due to reduced protein hydrolysis as a result of formation of Maillard compounds. In the current study this reduced biodegradability appears to outweigh any benefit due to thermal hydrolysis of ligno-cellulosic components.  相似文献   
280.
The food supply chain is affected by losses of products near to their expiry date or damaged by improper transportation or production defects. Such products are usually poorly attractive for the consumer in the target market even if they maintain their nutritional properties. On the other hand undernourished people face every day the problem of fulfilling their nutritional needs usually relying on non-profit organizations. In this field the food recovery enabling economic benefits for donors is nowadays seen as a coherent way to manage food products unsalable in the target market for various causes and thus destined to be discarded and disposed to landfill thus representing only a cost. Despite its obvious affordability the food recovery is today not always practiced because the economic benefits that could be achieved are barely known. The paper aims at presenting a deterministic mathematical model for the optimization of the supply chain composed by retailers and potential recipients that practice the food recovery, taking into account the benefits recognized to donors and the management costs of the food recovery. The model determines the optimal time to withdraw the products from the shelves as well as the quantities to be donated to the non-profit organizations and those to be sent to the livestock market maximizing the retailer profit. The results show that the optimal conditions ensuring the affordability of the food recovery strategy including the tax reliefs and cost saving for the retailers outperforms the profit achievable in absence of such a system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号