首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
安全科学   8篇
综合类   1篇
社会与环境   1篇
灾害及防治   2篇
  2021年   2篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Introduction: It has been demonstrated that weather conditions have significant impacts on freeway safety. However, when employing an econometric model to examine freeway crash injury severity, most of the existing studies tend to categorize several different adverse weather conditions such as rainy, snowy, and windy conditions into one category, “adverse weather,” which might lead to a large amount of information loss and estimation bias. Hence, to overcome this issue, real-time weather data, the value of meteorological elements when crashes occurred, are incorporated into the dataset for freeway crash injury analysis in this study. Methods: Due to the possible existence of spatial correlations in freeway crash injury data, this study presents a new method, the spatial multinomial logit (SMNL) model, to consider the spatial effects in the framework of the multinomial logit (MNL) model. In the SMNL model, the Gaussian conditional autoregressive (CAR) prior is adopted to capture the spatial correlation. In this study, the model results of the SMNL model are compared with the model results of the traditional multinomial logit (MNL) model. In addition, Bayesian inference is adopted to estimate the parameters of these two models. Result: The result of the SMNL model shows the significance of the spatial terms, which demonstrates the existence of spatial correlation. In addition, the SMNL model has a better model fitting ability than the MNL model. Through the parameter estimate results, risk factors such as vertical grade, visibility, emergency medical services (EMS) response time, and vehicle type have significant effects on freeway injury severity. Practical Application: According to the results, corresponding countermeasures for freeway roadway design, traffic management, and vehicle design are proposed to improve freeway safety. For example, steep slopes should be avoided if possible, and in-lane rumble strips should be recommended for steep down-slope segments. Besides, traffic volume proportion of large vehicles should be limited when the wind speed exceeds a certain grade.  相似文献   
12.
Introduction: With the rapid development of transportation infrastructures in precipitous areas, the mileage of freeway tunnels in China has been mounting during the past decade. Provided the semi-constrained space and the monotonous driving environment of freeway tunnels, safety concerns still remain. This study aims to investigate the uniqueness of the relationships between crash severity in freeway tunnels and various contributory factors. Method: The information of 10,081 crashes in the entire freeway network of Guizhou Province, China in 2018 is adopted, from which a subset of 591 crashes in tunnels is extracted. To address spatial variations across various road segments, a two-level binary logistic approach is applied to model crash severity in freeway tunnels. A similar model is also established for crash severity on general freeways as a benchmark. Results: The uniqueness of crash severity in tunnels mainly includes three aspects: (a) the road-segment-level effects are quantifiable with the environmental factors for crash severity in tunnels, but only exist in the random effects for general freeways; (b) tunnel has a significantly higher propensity to cause severe injury in a crash than other locations of a freeway; and (c) different influential factors and levels of contributions are found to crash severity in tunnels compared with on general freeways. Factors including speed limit, tunnel length, truck involvement, rear-end crash, rainy and foggy weather and sequential crash have positive contributions to crash severity in freeway tunnels. Practical applications: Policy implications for traffic control and management are advised to improve traffic safety level in freeway tunnels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号