首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   0篇
安全科学   27篇
环保管理   23篇
综合类   17篇
基础理论   1篇
污染及防治   5篇
评价与监测   2篇
社会与环境   3篇
灾害及防治   33篇
  2023年   1篇
  2021年   3篇
  2020年   6篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   4篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1987年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
31.
Carbon capture and storage (CCS) may play a central role in managing carbon emissions from the power sector and industry, but public support for the technology is unclear. To address this knowledge gap, and to test the use of discrete choice analysis for determining public attitudes, two focus groups and a national survey were conducted in Canada to investigate the public's perceptions of the benefits and risks of CCS, the likely determinants of public opinion, and overall support for the use of CCS.The results showed slight support for CCS development in Canada, and a belief that CCS is less risky than normal oil and gas industry operations, nuclear power, or coal-burning power plants. A majority of respondents indicate that they would support the use of CCS as part of a greenhouse gas reduction strategy, although it would likely have to be used in combination with energy efficiency and alternative energy technologies in order to retain public support.  相似文献   
32.
Geological CO2 capture and storage (CCS) is among the main near-term contenders for addressing the problem of global climate change. Even in a baseline scenario, with no comprehensive international climate policy, a moderate level of CCS technology is expected to be deployed, given the economic benefits associated with enhanced oil and gas recovery. With stringent climate change control, CCS technologies will probably be installed on an industrial scale. Geologically stored CO2, however, may leak back to the atmosphere, which could render CCS ineffective as climate change reduction option. This article presents a long-term energy scenario study for Europe, in which we assess the significance for climate policy making of leakage of CO2 artificially stored in underground geological formations. A detailed sensitivity analysis is performed for the CO2 leakage rate with the bottom-up energy systems model MARKAL, enriched for this purpose with a large set of CO2 capture technologies (in the power sector, industry, and for the production of hydrogen) and storage options (among which enhanced oil and gas recovery, enhanced coal bed methane recovery, depleted fossil fuel fields, and aquifers). Through a series of model runs, we confirm that a leakage rate of 0.1%/year seems acceptable for CCS to constitute a meaningful climate change mitigation option, whereas one of 1%/year is not. CCS is essentially no option to achieve CO2 emission reductions when the leakage rate is as high as 1%/year, so more reductions need to be achieved through the use of renewables or nuclear power, or in sectors like industry and transport. We calculate that under strict climate control policy, the cumulative captured and geologically stored CO2 by 2100 in the electricity sector, when the leakage rate is 0.1%/year, amounts to about 45,000 MtCO2. Only a little over 10,000 MtCO2 cumulative power-generation-related emissions are captured and stored underground by the end of the century when the leakage rate is 1%/year. Overall marginal CO2 abatement costs increase from a few €/tCO2 today to well over 150 €/tCO2 in 2100, under an atmospheric CO2 concentration constraint of 550 ppmv. Carbon costs in 2100 turn out to be about 40 €/tCO2 higher when the annual leakage rate is 1%/year in comparison to when there is no CO2 leakage. Irrespective of whether CCS deployment is affected by gradual CO2 seepage, the annual welfare loss in Europe induced by the implementation of policies preventing “dangerous anthropogenic interference with the climate system” (under our assumption, implying a climate stabilisation target of 550 ppmv CO2 concentration) remains below 0.5% of GDP during the entire century.
Koen SmekensEmail:
  相似文献   
33.
Chile and Peru produce almost 45% of world’s mine copper output. This situation reflects their natural endowment and mining tradition, but is also the result of development processes undertaken over the last decades. As a result, both countries multiplied its mine copper production in more than 3 times in the last 20 years. Mining labor productivity played a central role achieving these amazing growth rates. Although there is a consensus about the relevance of this variable for the mining industry, the specific factors behind labor productivity changes are not completely understood.  相似文献   
34.
Ultrasonic experiments were undertaken on CO2 flooded sandstone core samples, both synthetic sandstones and core plugs from the CRC1 CO2 injection well in the Otway Basin, Victoria, South Eastern. Australia. The aim of these laboratory tests was to investigate the effects of CO2 as a pore fluid on the seismo-acoustic response of the sandstone and ultimately to provide an indication of the sensitivity of time-lapse seismic imaging of the eventual CO2/CH4 plume in the Otway, Waarre C formation.The synthetic sandstones were manufactured using both a proprietary calcium in situ precipitation (CIPS) process and a silica cementing technique. Samples were tested in a computer controlled triaxial pressure cell where pore pressures can be controlled independently of the confining pressures. The pressure cell is equipped with ultrasonic transducers housed in the loading platens. Consequently, effective pressures equivalent to those expected in the reservoir can be applied while ultrasonic testing is undertaken. Both compressional, P and shear waves, S were recorded via a digital oscilloscope at a range of effective pressure steps. Pore pressures were varied from 4 MPa to 17 MPa to represent both the gaseous and liquid phase regions of the CO2 phase diagram. Similar experiments were conducted on core plugs from the Waarre C reservoir horizon obtained from the CRC1 injection well, but with an intervening brine-saturated step and in some cases with a CO2/CH4 mix of 80%/20% molar fraction which is representative of the field situation. However, the pore pressure in these experiments was held at 4 MPa. Finally, acoustic impedances and reflection coefficients were calculated for the reservoir using Gassmann theory and the implications for imaging the CO2 plume is discussed.  相似文献   
35.
Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO2) injection into and storage in such “closed” systems with impervious seals, or “semi-closed” systems with non-ideal (low permeability) seals, is different from that in “open” systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO2 injection may have a limiting effect on CO2 storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO2 storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO2 occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With non-ideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO2 storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the “true” values obtained using detailed numerical simulations of CO2 and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage–formation–seal systems of various geometric and hydrogeological properties.  相似文献   
36.
Enhanced oil recovery (EOR) through CO2 flooding has been practiced on a commercial basis for the last 35 years and continues today at several sites, currently injecting in total over 30 million tons of CO2 annually. This practice is currently exclusively for economic gain, but can potentially contribute to the reduction of emissions of greenhouse gases provided it is implemented on a large scale. Optimal operations in distributing CO2 to CO2-EOR or enhanced gas recovery (EGR) projects (referred to here collectively as CO2-EHR) on a large scale and long time span imply that intermediate storage of CO2 in geological formations may be a key component. Intermediate storage is defined as the storage of CO2 in geological media for a limited time span such that the CO2 can be sufficiently reproduced for later use in CO2-EHR. This paper investigates the technical aspects, key individual parameters and possibilities of intermediate storage of CO2 in geological formations aiming at large scale implementation of carbon dioxide capture and storage (CCS) for deep emission reduction. The main parameters are thus the depth of injection and density, CO2 flow and transport processes, storage mechanisms, reservoir heterogeneity, the presence of impurities, the type of the reservoirs and the duration of intermediate storage. Structural traps with no flow of formation water combined with proper injection planning such as gas-phase injection favour intermediate storage in deep saline aquifers. In depleted oil and gas fields, high permeability, homogeneous reservoirs with structural traps (e.g. anticlinal structures) are good candidates for intermediate CO2 storage. Intuitively, depleted natural gas reservoirs can be potential candidates for intermediate storage of carbon dioxide due to similarity in storage characteristics.  相似文献   
37.

Introduction

Research and practice have demonstrated that decisions made prior to work at construction sites can influence construction worker safety. However, it has also been argued that most architects and design engineers possess neither the knowledge of construction safety nor the knowledge of construction processes necessary to effectively perform Construction Hazards Prevention through Design (CHPtD).

Method

This paper introduces a quantitative methodology that supports designers by providing a way to evaluate the safety-related performance of residential construction designs using a risk analysis-based approach. The methodology compares the overall safety risk level of various construction designs and ranks the significance of the various safety risks of each of these designs. The methodology also compares the absolute importance of a particular safety risk in various construction designs.

Results

Because the methodology identifies the relevance of each safety risk at a particular site prior to the construction stage, significant risks are highlighted in advance. Thus, a range of measures for mitigating safety risks can then be implemented during on-site construction.

Impact on industry

The methodology is specially worthwhile for designers, who can compare construction techniques and systems during the design phase and determine the corresponding level of safety risk without their creative talents being restricted. By using this methodology, construction companies can improve their on-site safety performance.  相似文献   
38.
我国城市地下水开采诱发的灾害及对策探讨   总被引:1,自引:0,他引:1  
宋永能 《灾害学》1992,7(3):48-52
本文通过综合全国各地水文地质灾害现象,将其归纳为四类:(1) 地下水下降漏斗扩大;(2) 地面沉降;(3) 地下水质恶化;(4) 地裂缝和地塌陷。同时分析了这些灾害的形成机制、危害程度以及经济损失情况,并提出了一些相应的治理对策。  相似文献   
39.
The geological storage of carbon dioxide is currently being considered as a possible technology for reducing emissions to atmosphere. Although there are several operational sites where carbon dioxide is stored in this way, methods for assessing the long-term performance and safety of geological storage are at an early stage of development. In this paper the similarities and differences between this field and the geological disposal of radioactive wastes are considered. Priorities are suggested for the development of performance assessment methods for carbon dioxide storage based on areas where experience from radioactive waste disposal can be usefully applied. These include, inter alia, dealing with the various types of uncertainty, using systematic methodologies to ensure an auditable and transparent assessment process, developing whole system models and gaining confidence to model the long-term system evolution by considering information from natural systems. An important area of data shortage remains the potential impacts on humans and ecosystems.  相似文献   
40.
Deep saline aquifers have large capacity for geological CO2 storage, but are generally not as well characterized as petroleum reservoirs. We here aim at quantifying effects of uncertain hydraulic parameters and uncertain stratigraphy on CO2 injectivity and migration, and provide a first feasibility study of pilot-scale CO2 injection into a multilayered saline aquifer system in southwest Scania, Sweden. Four main scenarios are developed, corresponding to different possible interpretations of available site data. Simulation results show that, on the one hand, stratigraphic uncertainty (presence/absence of a thin mudstone/claystone layer above the target storage formation) leads to large differences in predicted CO2 storage in the target formation at the end of the test (ranging between 11% and 98% of injected CO2 remaining), whereas other parameter uncertainty (in formation and cap rock permeabilities) has small impact. On the other hand, the latter has large impact on predicted injectivity, on which stratigraphic uncertainty has small impact. Salt precipitation at the border of the target storage formation affects CO2 injectivity for all considered scenarios and injection rates. At low injection rates, salt is deposited also within the formation, considerably reducing its availability for CO2 storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号