首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   30篇
  国内免费   103篇
安全科学   34篇
废物处理   19篇
环保管理   239篇
综合类   441篇
基础理论   216篇
污染及防治   478篇
评价与监测   241篇
社会与环境   61篇
灾害及防治   15篇
  2024年   3篇
  2023年   12篇
  2022年   16篇
  2021年   28篇
  2020年   49篇
  2019年   21篇
  2018年   41篇
  2017年   27篇
  2016年   42篇
  2015年   51篇
  2014年   47篇
  2013年   110篇
  2012年   87篇
  2011年   181篇
  2010年   104篇
  2009年   177篇
  2008年   159篇
  2007年   125篇
  2006年   72篇
  2005年   42篇
  2004年   34篇
  2003年   46篇
  2002年   34篇
  2001年   24篇
  2000年   36篇
  1999年   19篇
  1998年   16篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1744条查询结果,搜索用时 29 毫秒
81.
Some algae inhabit Cu-polluted soils. Intracellular Cu-accumulation and production of non-protein thiols in response to copper stress were compared in Stichococcus minor and Geminella terricola isolated from Cu-polluted and unpolluted soils, respectively. Cu-exposed (0.5 μM) S. minor accumulated lower amounts of copper (0.38 mM) than G. terricola (4.20 mM) and maintained 8.5-fold higher level of glutathione (GSH) than G. terricola. The ratio GSH/0.5 GSSG in the Cu-treated S. minor (7.21) was 7-times higher than in G. terricola. Reduced and oxidized forms of phytochelatins were found in both algae. Under copper stress (5 μM) the ratio -SHtotal/Cuintracellular in S. minor ranged from 2.3 to 6.2, while it was lower than 1.0 in G. terricola. Low intracellular Cu-accumulation and maintenance of high GSH level concomitant with PCs production seem to be responsible for a higher Cu-resistance of S. minor than G. terricola.  相似文献   
82.
Sorption kinetic characteristics of BDE-28 and BDE-47 on five natural soils with different organic carbon fractions were investigated, and could be satisfactorily described by a two (fast and slow)-compartment first-order model with the ratio of rate constants ranged from 9 to 94 times. The fast compartment made a dominant contribution (71% ∼ 94%) to the total sorption amount in the whole process, and accounted for over 90% of the increase in the total sorption amount at initial 5 h. The influence of the slow compartment on the increase in the total sorption amount became principal (above 90%) in the subsequent stage approximately from 9 h or 25 h to the apparent equilibrium at 265 h. The results proposed the different sorption behaviors of the mathematically classified compartments for BDE-28 and BDE-47, which may correspond to the different soil components, such as soil organic fractions with amorphous and condensed structures, respectively.  相似文献   
83.
The effects of experimentally elevated O3 on soil respiration rates, standing fine-root biomass, fine-root production and δ13C signature of newly produced fine roots were investigated in an adult European beech/Norway spruce forest in Germany during two subsequent years with contrasting rainfall patterns. During humid 2002, soil respiration rate was enhanced under elevated O3 under beech and spruce, and was related to O3-stimulated fine-root production only in beech. During dry 2003, the stimulating effect of O3 on soil respiration rate vanished under spruce, which was correlated with decreased fine-root production in spruce under drought, irrespective of the O3 regime. δ13C signature of newly formed fine-roots was consistent with the differing gs of beech and spruce, and indicated stomatal limitation by O3 in beech and by drought in spruce. Our study showed that drought can override the stimulating O3 effects on fine-root dynamics and soil respiration in mature beech and spruce forests.  相似文献   
84.
The potential for storing additional C in U.S. Corn Belt soils - to offset rising atmospheric [CO2] - is large. Long-term cultivation has depleted substantial soil organic matter (SOM) stocks that once existed in the region's native ecosystems. In central Illinois, free-air CO2 enrichment technology was used to investigate the effects of elevated [CO2] on SOM pools in a conservation tilled corn-soybean rotation. After 5 and 6 y of CO2 enrichment, we investigated the distribution of C and N among soil fractions with varying ability to protect SOM from rapid decomposition. None of the isolated C or N pools, or bulk-soil C or N, was affected by CO2 treatment. However, the site has lost soil C and N, largely from unprotected pools, regardless of CO2 treatment since the experiment began. These findings suggest management practices have affected soil C and N stocks and dynamics more than the increased inputs from CO2-stimulated photosynthesis.  相似文献   
85.
Fire as a Soil-Forming Factor   总被引:2,自引:0,他引:2  
Giacomo Certini 《Ambio》2014,43(2):191-195
In the span of a human generation, fire can, in theory, impact all the land covered by vegetation. Its occurrence has many important direct and indirect effects on soil, some of which are long-lasting or even permanent. As a consequence, fire must be considered a soil-forming factor, on par with the others traditionally recognized, namely: parent material, topography, time, climate, living beings not endowed with the power of reason, and humans.  相似文献   
86.
Check-dams are the most common structures for controlling soil erosion in the Loess Plateau. However, the effect of check-dams on carbon sequestration, along with sediment transport and deposition, has not been assessed over large areas. In this study, we evaluated the carbon sequestration function of check-dams in the Loess Plateau. The results indicate that there were approximately 11 000 check-dams distributed in the Loess Plateau, with an estimate of the amount of sediment of 21 × 109 m3 and a soil organic carbon storage amount of 0.945 Pg. Our study reveals that check-dams in the Loess Plateau not only conserve soil and water but also sequester carbon.  相似文献   
87.
An existing model of radiocaesium transfer to grasses was extended to include wheat and barley and parameterised using data from a wide range of soils and contact times. The model structure was revised and evaluated using a subset of the available data which was not used for model parameterisation. The resulting model was then used as a basis for systematic model reduction to test the utility of the model components. This analysis suggested that the use of 4 model variables (relating to radiocaesium adsorption on organic matter and the pH sensitivity of soil solution potassium concentration) and 1 model input (pH) are not required. The results of this analysis were used to develop a reduced model which was further evaluated in terms of comparisons to observations. The reduced model had an improved empirical performance and fewer adjustable parameters and soil characteristic inputs.  相似文献   
88.
This study was conducted to identify the principle selenate carrier phases for two selected soils, by comparing their reactivity with selenate to that of pure phases of the solids. Silica, calcium carbonate, aluminium hydroxide, goethite, bentonite and humic acid were selected as the main soil carrier phases. Comparisons were made first on the parameter values obtained with the best fit of a kinetic sorption model which can discriminate instantaneous sorption from kinetically limited sorption. Then comparisons were made of the ability for each solid to stabilise selenate by measuring the ratio of the partition coefficient for sorption (Kdsorption) over that of the desorption (Kddesorption). Kinetics and stabilisation were used to help elucidate the nature of interactions with the test solid phases for a large range of selenate concentrations. The experiments were conducted over 165 h in batch reactors, the solid being isolated from the solution by dialysis tubing, at two pH (5.4 and 8) and three selenate concentrations (1 × 10−3, 1 × 10−6 and 1 × 10−8 mol L−1). The results obtained showed that only aluminium hydroxide can sorb selenate throughout the studied pH range (pH 5.4 to 8.0). The sorption capacity on this mineral was high (Kdsorption > 100 to 1 × 104 L kg−1) and the selenate was mainly stabilized by the formation of inner sphere complexes. The sorption on goethite occurred at pH 5.4 (Kdsorption 52 L kg−1), mainly as outer sphere complexes, and was null at pH 8. On silica, a weak sorption was observed only at pH 5.4 and at 165 h (Kdsorption 4 L kg−1). On bentonite, calcium carbonate and humic acid no significant sorption was observed. Concerning the two soils studied, different behaviours were observed for selenate. For soil Ro (pH 5.4), Kdsorption was low (8 L kg−1) compared to soil Bu (pH 8) (70 L kg−1). The sorption behaviour of selenate on soil Ro was mainly due to outer sphere complexes, as for goethite, whereas for soil Bu the sorption was mainly attributed to inner sphere complexes followed by reduction mechanisms, probably initiated by microorganisms, in which no steady state was reached at the end of the 165 h experiments. The sorption of selenate decreased when concentrations reached 1 × 10−3 mol L−1, due to solid saturation, except for aluminium hydroxide. Reduction of selenate seemed also to occur on goethite and soil Ro, for the same concentration, but without preventing a decrease in sorption. Thus, this work shows that the comparison of selenate behaviour between soil and pure phases helps to elucidate the main carrier phases and sorption mechanisms in soil.  相似文献   
89.
The vertical distribution of the 236U/238U isotopic ratio was investigated in soil samples from three different locations on La Palma (one of the seven Canary Islands, Spain). Additionally the 240Pu/239Pu atomic ratio, as it is a well establish tool for the source identification, was determined. The radiochemical procedure consisted of a U separation step by extraction chromatography using UTEVA® Resin (Eichrom Technologies, Inc.). Afterwards Pu was separated from Th and Np by anion exchange using Dowex 1x2 (Dow Chemical Co.). Furthermore a new chemical procedure with tandem columns to separate Pu and U from the matrix was tested. For the determination of the uranium and plutonium isotopes by alpha spectrometry thin sources were prepared by microprecipitation techniques. Additionally these fractions separated from the soil samples were measured by Accelerator Mass Spectrometry (AMS) to get information on the isotopic ratios 236U/238U, 240Pu/239Pu and 236U/239Pu, respectively. The 236U concentrations [atoms/g] in each surface layer (∼2 cm) were surprisingly high compared to deeper layers where values around two orders of magnitude smaller were found. Since the isotopic ratio 240Pu/239Pu indicated a global fallout signature we assume the same origin as the probable source for 236U. Our measured 236U/239Pu value of around 0.2 is within the expected range for this contamination source.  相似文献   
90.
Mo bioaccumulation in the earthworm Eisenia andrei was determined after 28 d exposure in ten different European field soils (pH 4.4-7.8) and an artificial soil, freshly spiked with Na2MoO4 at concentrations between 3.2 and 3200 mg Mo kg−1 dry soil. Three field soils were also tested after ageing for 11 months. Earthworm Mo concentrations generally levelled off at high exposure levels but in most soils showed a (nearly) linear increase with increasing soil concentrations in the lower, non-toxic range (below EC10 or NOEC for reproduction effects). Bioaccumulation (BAF) and Bioconcentration factors (BCF) were calculated as the ratio of earthworm concentration to soil and estimated porewater concentrations, respectively. BAFs (0.35-3.44) and BCFs (1.31-276) did not seem much affected by soil concentration, suggesting that earthworms are not capable of regulating their internal Mo concentrations. BAF was best predicted by ammonium oxalate-extractable iron (Feox) and phosphor (Pox) contents of the soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号