首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   30篇
  国内免费   103篇
安全科学   34篇
废物处理   19篇
环保管理   239篇
综合类   441篇
基础理论   216篇
污染及防治   478篇
评价与监测   241篇
社会与环境   61篇
灾害及防治   15篇
  2024年   3篇
  2023年   12篇
  2022年   16篇
  2021年   28篇
  2020年   49篇
  2019年   21篇
  2018年   41篇
  2017年   27篇
  2016年   42篇
  2015年   51篇
  2014年   47篇
  2013年   110篇
  2012年   87篇
  2011年   181篇
  2010年   104篇
  2009年   177篇
  2008年   159篇
  2007年   125篇
  2006年   72篇
  2005年   42篇
  2004年   34篇
  2003年   46篇
  2002年   34篇
  2001年   24篇
  2000年   36篇
  1999年   19篇
  1998年   16篇
  1997年   16篇
  1996年   19篇
  1995年   11篇
  1994年   14篇
  1993年   28篇
  1992年   19篇
  1991年   3篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1744条查询结果,搜索用时 872 毫秒
861.
盐结皮对土壤有机质和水分积累的影响   总被引:1,自引:0,他引:1  
莫治新 《环境保护科学》2015,(3):120-121,138
以喀什地区典型的盐结皮土壤为例,在不同厚度的盐结皮土壤区域采集不同深度的土壤样品。结果表明:盐结皮越厚的土壤区域,其各层土壤中的盐分含量越高,土壤有机质含量越低,土壤水分含量越高,由此说明,盐结皮不利于土壤有机质的积累,但是却起到一定的保水作用。  相似文献   
862.
本研究以三峡库区菱角塘小流域为研究对象,在GIS技术的支持下,通过遥感技术和野外调查进行信息采集,对修正的通用土壤流失方程(RUSLE)各因子进行量化分析,从而对三峡库区菱角塘小流域土壤侵蚀量进行定量评价,并对土壤侵蚀强度进行分级;在此基础上分析不同坡度和土地利用类型的土壤侵蚀空间分布特征。结果表明,菱角塘小流域年土壤侵蚀量为208.32t/a,土壤侵蚀模数为1 987.75t/(km2·a),属于轻度侵蚀。28.62%的区域为中度、强度或极强度侵蚀,但是其侵蚀量却占总侵蚀量的82.36%,是预防和加强水土流失治理的重点区域。土壤侵蚀主要发生在坡度为15°~35°的区域,其中15°~25°的坡度土壤侵蚀属于中度侵蚀;坡耕地侵蚀最为严重,15°~25°的坡耕地侵蚀量占总侵蚀量的57.15%,表明坡耕地是该小流域水土流失的主要策源地。同时用137 Cs核素示踪技术测定的坡耕地和林地土壤侵蚀模数证实了RUSLE模型具有较高的准确性和可靠性,该模型在库区地块尺度具有一定的推广价值。  相似文献   
863.
Understanding the effects of oxalic acid (OA) on the immobilization of Pb(II) in contaminated soils by phosphate materials, has considerable benefits for risk assessment and remediation strategies for the soil. A series of phosphate amendments with/without oxalic acid were applied to two anthropogenic contaminated soils. We investigated the immobilization of Pb(II) by KH2PO4, phosphate rock (PR), activated phosphate rock (APR) and synthetic hydroxyapatite (HAP) at different phosphate:Pb (P:Pb) molar ratios (0, 0.6, 2.0 and 4.0) in the presence/absence of 50 mmol oxalic acid/kg soil, respectively. The effects of treatments were evaluated using single extraction with deionized water or CaCl2, Community Bureau of Reference (BCR) sequential extraction and toxicity characteristic leaching procedure (TCLP) methods. Our results showed that the concentration of water extractable, exchangeable and TCLP-Pb all decreased with incubation time. The concentration of water-extractable Pb after 120 days was reduced by 100% when soils were amended with APR, HAP and HAP + OA, and the TCLP-Pb was < 5 mg/L for the red soil at P:Pb molar ratio 4.0.Water-soluble Pb could not be detected and the TCLP-Pb was < 5 mg/L at all treatments applied to the yellow-brown soil. BCR results indicated that APRwasmost effective, although a slight enhancement of water-soluble phosphate was detected at the P:Pbmolar ratio 4.0 at the beginning of incubation. Oxalic acid activated phosphates, and so mixing insoluble phosphates with oxalic acid may be a useful strategy to improve their effectiveness in reducing Pb bioavailability.  相似文献   
864.
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD) and 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and pH and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition (B + S) and 94.3% via biostimulation alone (B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp., Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy (SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5% by natural attenuation after 8 weeks of treatment.  相似文献   
865.
We studied the dynamics of mercury (Hg) transfer in Phaseolus vulgaris plants grown in soil with Hg-doped compost at the maximum levels permitted by Colombian law on organic amendments. Quantitative evaluation of transfer was made in different plant organs: roots, stem, leaves, pods and seeds. Matrix effect was determined in doped soil assays, using soil with and without addition of compost. Results showed that the use of organic matter reduced Hg transfer to the plant and the amount transferred was differentially distributed to the organs. We observed an inverse relationship between concentration and distance from the body to the root. It was evident that transfer was mediated by quantitative factors; the greater the presence of mercury in soil, the larger the amount that will be transferred. Results also indicate the remedial effect of compost and the presence of a barrier, at the root level, against mercury translocation to the plant aerial parts.  相似文献   
866.
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges(i.e. 10, 1–10, 0.5–1, 0.2–0.5 and 0.2 μm) for a purple soil(Entisol) and a yellow soil(Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction.We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles( 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles( 0.2 μm). Vermiculite,illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy.Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties.  相似文献   
867.
We studied the dynamics of mercury (Hg) transfer in Phaseolus vulgaris plants grown in soil with Hg-doped compost at the maximum levels permitted by Colombian law on organic amendments. Quantitative evaluation of transfer was made in different plant organs: roots, stem, leaves, pods and seeds. Matrix effect was determined in doped soil assays, using soil with and without addition of compost. Results showed that the use of organic matter reduced Hg transfer to the plant and the amount transferred was differentially distributed to the organs. We observed an inverse relationship between concentration and distance from the body to the root. It was evident that transfer was mediated by quantitative factors; the greater the presence of mercury in soil, the larger the amount that will be transferred. Results also indicate the remedial effect of compost and the presence of a barrier, at the root level, against mercury translocation to the plant aerial parts.  相似文献   
868.
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane(DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane(DDD) and1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene(DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and p H and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition(B + S) and 94.3%via biostimulation alone(B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp.,Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy(SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5%by natural attenuation after 8 weeks of treatment.  相似文献   
869.
湖州表层土壤全氟含量分布及评价   总被引:1,自引:0,他引:1  
为揭示湖州表层土壤中全氟的空间分布特征及其与其他元素间的相关性,测定分析了湖州市表层土壤的全氟含量,按照土壤全氟指数法评价该地区土壤质量。结果表明,湖州市表层土壤中全氟含量范围在111~883mg/kg之间,均值448 mg/kg,98.4%的表层土壤全氟含量处于正常水平,湖州市表层土壤中全氟含量与Li、Ga、Be、Cs含量密切相关且呈正态分布。  相似文献   
870.
以2000—2015年珠海竹仙洞水库小流域湿地松林、台湾相思林和灌木丛为样本,对其土壤属性指标进行相关性分析和主成分分析。结果表明,经过15年自然演替,3个群落的土壤可交换酸度呈下降趋势,其中台湾相思林和灌木丛酸度降低达到显著或极显著水平,受Al3+含量影响较大;3个群落的可交换Mg2+、K+、Na+在两种土层均有不同程度的显著下降,而可交换Ca2+的变化仅在台湾相思林中显著;总氮、总碳含量均呈上升趋势。主成分分析显示,台湾相思林的生物量丰富、土壤腐殖质多,固氮作用强,故对氮沉降的酸缓冲能力更强。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号