全文获取类型
收费全文 | 96篇 |
免费 | 2篇 |
国内免费 | 49篇 |
专业分类
安全科学 | 3篇 |
废物处理 | 7篇 |
环保管理 | 11篇 |
综合类 | 72篇 |
基础理论 | 9篇 |
污染及防治 | 28篇 |
评价与监测 | 13篇 |
社会与环境 | 3篇 |
灾害及防治 | 1篇 |
出版年
2023年 | 3篇 |
2022年 | 3篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 4篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 2篇 |
2015年 | 7篇 |
2014年 | 4篇 |
2013年 | 6篇 |
2012年 | 6篇 |
2011年 | 14篇 |
2010年 | 5篇 |
2009年 | 13篇 |
2008年 | 10篇 |
2007年 | 11篇 |
2006年 | 8篇 |
2005年 | 11篇 |
2004年 | 5篇 |
2003年 | 7篇 |
2002年 | 5篇 |
2001年 | 6篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 3篇 |
排序方式: 共有147条查询结果,搜索用时 15 毫秒
81.
82.
Müller T Thissen R Braun S Dott W Fischer G 《Environmental science and pollution research international》2004,11(2):91-97
GOAL, SCOPE AND BACKGROUND: Malodorous volatiles derived from the decomposition of biowaste within the process of composting might pose a risk to human health. Different techniques of process engineering have been developed to minimise the burden of malodorous compounds in air possibly affecting compost workers and residents in the vicinity. METHODS: In the present study, three different composting facilities were examined for the emission of volatiles to estimate the impact of process engineering on the dispersal of odorous compounds and to discuss its relevance for human health. RESULTS AND DISCUSSION: Concentrations of single compounds belonging to alcohols, ketones, furanes, sulfur-containing compounds and especially terpenes ranged from 10(2) up to nearly 10(6) ng/m3 depending on the sampling sites and the process engineering. The ratio of MVOC and total VOC measured changed throughout the process of biodegradation. A certain combination of volatile compounds coincided with the occurrence of typical compost odour. CONCLUSION: The type of process engineering seemed to have a major impact on the emission of volatiles, as amounts of (microbial) volatiles emitted were characteristic for the different techniques used. Thus, the MVOC emission basically depends on the degree of biodegradation. It is likely that the concentrations workers are exposed to can have an impact on human health. RECOMMENDATIONS AND OUTLOOK: It is obvious that less sophisticated types of process engineering give rise to greater amounts of bioaerosols and volatiles and, therefore, technical devices have to be improved and controlled regularly to minimise adverse health effects on workers. 相似文献
83.
Zhengzhou is one of the most haze-polluted cities in Central China with high organic carbon emission, which accounts for 15%-20% of particulate matter (PM2.5) in winter and causes significantly adverse health effects. Volatile organic compounds (VOCs) are the precursors of secondary PM2.5 and O3 formation. An investigation of characteristics, sources and health risks assessment of VOCs was carried out at the urban area of Zhengzhou from 1st to 31st December, 2019. The mean concentrations of total detected VOCs were 48.8 ± 23.0 ppbv. Alkanes (22.0 ± 10.4 ppbv), halocarbons (8.1 ± 3.9 ppbv) and aromatics (6.5 ± 3.9 ppbv) were the predominant VOC species, followed by alkenes (5.1 ± 3.3 ppbv), oxygenated VOCs (3.6 ± 1.8 ppbv), alkyne (3.5 ± 1.9, ppbv) and sulfide (0.5 ± 0.9 ppbv). The Positive Matrix Factorization model was used to identify and apportion VOCs sources. Five major sources of VOCs were identified as vehicular exhaust, industrial processes, combustion, fuel evaporation, and solvent use. The carcinogenic and non-carcinogenic risk values of species were calculated. The carcinogenic and non-carcinogenic risks of almost all air toxics increased during haze days. The total non-carcinogenic risks exceeded the acceptable ranges. Most VOC species posed no non-carcinogenic risk during three haze events. The carcinogenic risks of chloroform, 1,2-dichloroethane, 1,2-dibromoethane, benzyl chloride, hexachloro-1,3-butadiene, benzene and naphthalene were above the acceptable level (1.0 × 10?6) but below the tolerable risk level (1.0 × 10?4). Industrial emission was the major contributor to non-carcinogenic, and solvent use was the major contributor to carcinogenic risks. 相似文献
84.
民用生物质燃烧挥发性有机化合物排放特征 总被引:8,自引:12,他引:8
民用生物质燃烧是我国人为源挥发性有机物(VOCs)排放的主要来源.采用罐采样-GC/MS和DNPH衍生-HPLC这2种方法联用采集和分析了5种主要民用生物质燃烧排放烟气中的VOCs组分,并利用碳平衡法确定其排放系数.研究表明,秸秆和木柴等民用生物质燃烧总的VOCs排放系数分别为(4.37±2.23)g·kg-1和(2.12±0.77)g·kg-1,秸秆燃烧排放高于木柴燃烧排放;民用生物质燃烧排放VOCs中,最为丰富的物种为芳香烃和醛类,含量均在25%以上;秸秆和木柴燃烧除卤代烃和腈类含量差异较大外,其余物种分布比较类似;秸秆和木柴燃烧VOCs排放总的臭氧生成潜势分别为(16.9±8.2)g·kg-1和(10.8±4.9)g·kg-1;臭氧生成潜势比较高的物种依次为:醛类、芳香烃和烯烃/炔烃,其中醛类贡献基本在50%以上. 相似文献
85.
成都市工业源重点VOC排放行业排放清单及空间分布特征 总被引:2,自引:0,他引:2
以2013年为基准,采用排放系数法对成都市区域范围内工业源的VOC排放进行了核算,利用GIS工具构建成都市1 km×1 km网格化排放清单,分析了VOCs的空间分布特征.研究结果表明:2013年成都市工业源VOC排放总量为(5.77±3.35)×10~4t,其中溶剂使用源排放(3.09±4.93)×10~4t,工艺过程源排放(2.35±3.82)×10~4t,化石燃料燃烧源排放(0.21±0.61)×10~4t,生物质燃烧源排放(0.12±0.48)×10~4t.从工业源VOC排放的空间分布特征上看,都江堰、郫县、温江和崇州是最主要的贡献区县,涉及的排污企业类型主要包括钢铁、化工和水泥行业. 相似文献
86.
挥发性有机物(VOCs)是目前影响我国大气环境质量的关键污染物之一.工业源已成为中国最主要的VOCs排放源,其中化工行业的VOCs排放贡献尤为突出.化工企业已经大量集聚于化工园区内,因此化工园区的VOCs控制至关重要.本研究以典型精细化工园区——杭州湾上虞经济技术开发区为例,通过分析精细化工生产模式及VOCs产生原理,建立了基于工艺过程的VOCs产生量核算方法,对投料、升温、化学反应产生气体带出、清洗吹扫、真空抽气、泄压释放和蒸发逸散等生产过程的VOCs产生量进行了核算;同时运用化工流程模拟软件Aspen进行了前述生产过程VOCs产生量估算;运用2种方法对案例园区14种典型产品各工艺过程的VOCs产生特征进行了分析,并对两种方法的核算结果进行了比较.结果发现,除泄压释放环节外,两种方法的结果差异在±22%以内.进而对该园区典型企业的代表性产品进行计算方法应用,可得到精准的VOCs产生关键环节和组分.案例研究表明这一方法在定量的化工生产参数支持下估算精细化工工艺过程的VOCs产生量具有较好的精准性、简便性和可靠性. 相似文献
87.
Investigation of volatile organic compounds and phthalates present in the cabin air of used private cars 总被引:3,自引:0,他引:3
Otmar Geiss Salvatore Tirendi Josefa Barrero-Moreno Dimitrios Kotzias 《Environment international》2009,35(8):1188-1195
The presence of selected volatile organic compounds (VOCs) including aromatic, aliphatic compounds and low molecular weight carbonyls, and a target set of phthalates were investigated in the interior of 23 used private cars during the summer and winter. VOC concentrations often exceeded levels typically found in residential indoor air, e.g. benzene concentrations reached values of up to 149.1 µg m− 3. Overall concentrations were 40% higher in summer, with temperatures inside the cars reaching up to 70 °C. The most frequently detected phthalates were di-n-butyl-phthalate and bis-(2-ethylhexyl) phthalate in concentrations ranging from 196 to 3656 ng m− 3. 相似文献
88.
中国涂料应用过程挥发性有机物的排放计算及未来发展趋势预测 总被引:3,自引:10,他引:3
基于各行业的涂料当前消费量和未来消费预测,以及各行业使用涂料的挥发性有机物(VOC)含量,建立了分省、分行业、分化学组分的排放清单模型,获得2005~2020年中国涂料应用过程的VOC排放清单.结果表明,2005年,我国涂料应用共排放VOC约1 883 kt,以苯系物、醇、酯、醚、酮5类化合物为主,平均增量反应活性指标(以O3/VOC计)约为3.6 g/kg,其中31%的VOC为有毒物质.如不加强控制,到2020年该部门VOC排放量将激增至5 673 kt;因此,国家应及时开展其排放控制行动.排放控制情景分析表明,通过提高涂料产品品质达到发达国家上世纪末水平,且要求新建规模企业安装有机废气末端处理设施,2020年该部门VOC排放量可控制在3 519 kt;通过进一步将建筑涂料和木器涂料改进到当前欧美发达国家先进水平,且规模企业均安装有机废气末端处理设施,2020年该部门VOC排放量有可能控制在2 243 kt.2种控制情景下所排放VOC的化学毒性和大气氧化活性均得到了有效改善. 相似文献
89.
Kim KH Baek SO Choi YJ Sunwoo Y Jeon EC Hong JH 《Environmental monitoring and assessment》2006,118(1-3):407-422
In this study, concentrations of major aromatic VOCs were determined from landfill gas (LFG) at a total of five municipal
landfill sites in Korea including Nan Ji (NJ), Woon Jung (WJ), Sam Poong (SP), Hoei Chun (HC), and No Hyung (NH). The concentration
levels of those VOC were found to be significantly different, mainly as a function of such a parameter as landfill aging.
The VOC concentrations measured from the unclosed landfill sites (e.g., WJ) were characterized by exceedingly high values
above a few tens of ppm. However, the results of the abandoned site (e.g., SP) were about three orders of magnitude lower
than the others so as to merely exceed the typical ambient concentration levels. It was most striking to find a systematic
dominance of toluene over other aromatic VOC under most circumstances. The LFG flux values of all aromatic VOC and the four
specific major ones (termed as BTEX: benzene, toluene, ethylbenzene, and xylene) were also computed for each vent pipe from
all study sites using their concentrations and the concurrently determined environmental parameters. The results, if calculated
in terms of the average BTEX quantity emitted per vent pipe, showed that the magnitude of their emissions can vary substantially,
with the values ranging from 0.05 (SP) to 49.2 kg yr−1 (WJ in wintertime). The LFG flux values of aromatic VOC, when compared to the contribution of non-methane hydrocarbons (NMHC),
were able to explain a constant, but minor, proportion of the LFG carbon budget. 相似文献
90.
Salah Eddine Sbai Chunlin Li Antoinette Boreave Nicolas Charbonnel Sebastien Perrier Philippe Vernoux Farida Bentaye Christian George Sonia Gil 《环境科学学报(英文版)》2021,33(1):311-323
Photochemical aging of volatile organic compounds (VOCs) in the atmosphere is an important source of secondary organic aerosol (SOA). To evaluate the formation potential of SOA at an urban site in Lyon (France), an outdoor experiment using a Potential Aerosol Mass (PAM) oxidation flow reactor (OFR) was conducted throughout entire days during January-February 2017. Diurnal variation of SOA formations and their correlation with OH radical exposure (OHexp), ambient pollutants (VOCs and particulate matters, PM), Relative Humidity (RH), and temperature were explored in this study. Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of (0.2–1.2)×1012 molecule/(cm3?sec), corresponding to several days to weeks of equivalent atmospheric photochemical aging. The results informed that urban air at Lyon has high potency to contribute to SOA, and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis. Maximum SOA formation (36 µg/m3) was obtained at OHexp of about 7.4 × 1011molecule/(cm3?sec), equivalent to approximately 5 days of atmospheric oxidation. The correlation between SOA formation and ambient environment conditions (RH & temperature, VOCs and PM) was observed. It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon. 相似文献