首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   68篇
  国内免费   96篇
安全科学   21篇
废物处理   3篇
环保管理   79篇
综合类   241篇
基础理论   452篇
污染及防治   22篇
评价与监测   26篇
社会与环境   318篇
灾害及防治   31篇
  2024年   1篇
  2023年   17篇
  2022年   18篇
  2021年   29篇
  2020年   20篇
  2019年   24篇
  2018年   22篇
  2017年   33篇
  2016年   40篇
  2015年   32篇
  2014年   31篇
  2013年   83篇
  2012年   45篇
  2011年   62篇
  2010年   70篇
  2009年   43篇
  2008年   63篇
  2007年   73篇
  2006年   66篇
  2005年   66篇
  2004年   53篇
  2003年   35篇
  2002年   49篇
  2001年   37篇
  2000年   37篇
  1999年   22篇
  1998年   16篇
  1997年   10篇
  1996年   16篇
  1995年   19篇
  1994年   8篇
  1993年   20篇
  1992年   5篇
  1991年   10篇
  1990年   3篇
  1989年   6篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1193条查询结果,搜索用时 31 毫秒
951.
With urban populations worldwide expected to witness substantial growth over the next decades, pressure on urban land and resources is projected to increase in response. For policy-makers to adequately meet the challenges brought about by changes in the dynamics of urban areas, it is important to clearly identify and communicate their causes. Floods in Douala (the most densely populated city in the central African sub-region), are being associated chiefly with changing rainfall patterns, resulting from climate change in major policy circles. We investigate this contention using statistical analysis of daily rainfall time-series data covering the period 1951–2008, and tools of geographic information systems. Using attributes such as rainfall anomalies, trends in the rainfall time series, daily rainfall maxima and rainfall intensity–duration–frequency, we find no explanation for the attribution of an increase in the occurrences and severity of floods to changing rainfall patterns. The culprit seems to be the massive increase in the population of Douala, in association with poor planning and investment in the city's infrastructure. These demographic changes and poor planning have occurred within a physical geography setting that is conducive for the inducement of floods. Failed urban planning in Cameroon since independence set the city up for a flood-prone land colonization. This today translates to a situation in which large portions of the city's surface area and the populations they harbor are vulnerable to the city's habitual annual floods. While climate change stands to render the city even more vulnerable to floods, there is no evidence that current floods can be attributed to the changes in patterns of rainfall being reported in policy and news domains.  相似文献   
952.
Conservation fences are an increasingly common management action, particularly for species threatened by invasive predators. However, unlike many conservation actions, fence networks are expanding in an unsystematic manner, generally as a reaction to local funding opportunities or threats. We conducted a gap analysis of Australia's large predator‐exclusion fence network by examining translocation of Australian mammals relative to their extinction risk. To address gaps identified in species representation, we devised a systematic prioritization method for expanding the conservation fence network that explicitly incorporated population viability analysis and minimized expected species’ extinctions. The approach was applied to New South Wales, Australia, where the state government intends to expand the existing conservation fence network. Existing protection of species in fenced areas was highly uneven; 67% of predator‐sensitive species were unrepresented in the fence network. Our systematic prioritization yielded substantial efficiencies in that it reduced expected number of species extinctions up to 17 times more effectively than ad hoc approaches. The outcome illustrates the importance of governance in coordinating management action when multiple projects have similar objectives and rely on systematic methods rather than expanding networks opportunistically.  相似文献   
953.
Supplementary feeding is often a knee‐jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities.  相似文献   
954.
Anecdotal evidence suggests that socioeconomic shocks strongly affect wildlife populations, but quantitative evidence is sparse. The collapse of socialism in Russia in 1991 caused a major socioeconomic shock, including a sharp increase in poverty. We analyzed population trends of 8 large mammals in Russia from 1981 to 2010 (i.e., before and after the collapse). We hypothesized that the collapse would first cause population declines, primarily due to overexploitation, and then population increases due to adaptation of wildlife to new environments following the collapse. The long‐term Database of the Russian Federal Agency of Game Mammal Monitoring, consisting of up to 50,000 transects that are monitored annually, provided an exceptional data set for investigating these population trends. Three species showed strong declines in population growth rates in the decade following the collapse, while grey wolf (Canis lupus) increased by more than 150%. After 2000 some trends reversed. For example, roe deer (Capreolus spp.) abundance in 2010 was the highest of any period in our study. Likely reasons for the population declines in the 1990s include poaching and the erosion of wildlife protection enforcement. The rapid increase of the grey wolf populations is likely due to the cessation of governmental population control. In general, the widespread declines in wildlife populations after the collapse of the Soviet Union highlight the magnitude of the effects that socioeconomic shocks can have on wildlife populations and the possible need for special conservation efforts during such times. Declinación Rápida de las Poblaciones de Mamíferos Mayores después del Colapso de la Unión Soviética  相似文献   
955.
Captive breeding of mammals in zoos is the last hope for many of the best‐known endangered species and has succeeded in saving some from certain extinction. However, the number of managed species selected is relatively small and focused on large‐bodied, charismatic mammals that are not necessarily under strong threat and not always good candidates for reintroduction into the wild. Two interrelated and more fundamental questions go unanswered: have the major breeding programs succeeded at the basic level of maintaining and expanding populations, and is there room to expand them? I used published counts of births and deaths from 1970 to 2011 to quantify rates of growth of 118 captive‐bred mammalian populations. These rates did not vary with body mass, contrary to strong predictions made in the ecological literature. Most of the larger managed mammalian populations expanded consistently and very few programs failed. However, growth rates have declined dramatically. The decline was predicted by changes in the ratio of the number of individuals within programs to the number of mammal populations held in major zoos. Rates decreased as the ratio of individuals in programs to populations increased. In other words, most of the programs that could exist already do exist. It therefore appears that debates over the general need for captive‐breeding programs and the best selection of species are moot. Only a concerted effort could create room to manage a substantially larger number of endangered mammals. Los Límites para la Reproducción en Cautiverio de Mamíferos en Zoológicos Alroy  相似文献   
956.
Declining trends in the abundance of many fish urgently call for more efficient and informative monitoring methods that would provide necessary demographic data for the evaluation of existing conservation, restoration, and management actions. We investigated how genetic sibship reconstruction from young‐of‐the‐year brown trout (Salmo trutta L.) juveniles provides valuable, complementary demographic information that allowed us to disentangle the effects of habitat quality and number of breeders on juvenile density. We studied restored (n = 15) and control (n = 15) spawning and nursery habitats in 16 brown trout rivers and streams over 2 consecutive years to evaluate the effectiveness of habitat restoration activities. Similar juvenile densities both in restored and control spawning and nursery grounds were observed. Similarly, no differences in the effective number of breeders, Nb(SA), were detected between habitats, indicating that brown trout readily used recently restored spawning grounds. Only a weak relationship between the Nb(SA) and juvenile density was observed, suggesting that multiple factors affect juvenile abundance. In some areas, very low estimates of Nb(SA) were found at sites with high juvenile density, indicating that a small number of breeders can produce a high number of progeny in favorable conditions. In other sites, high Nb(SA) estimates were associated with low juvenile density, suggesting low habitat quality or lack of suitable spawning substrate in relation to available breeders. Based on these results, we recommend the incorporation of genetic sibship reconstruction to ongoing and future fish evaluation and monitoring programs to gain novel insights into local demographic and evolutionary processes relevant for fisheries management, habitat restoration, and conservation.  相似文献   
957.
Ecological factors generally affect population viability on rapid time scales. Traditional population viability analyses (PVA) therefore focus on alleviating ecological pressures, discounting potential evolutionary impacts on individual phenotypes. Recent studies of evolutionary rescue (ER) focus on cases in which severe, environmentally induced population bottlenecks trigger a rapid evolutionary response that can potentially reverse demographic threats. ER models have focused on shifting genetics and resulting population recovery, but no one has explored how to incorporate those findings into PVA. We integrated ER into PVA to identify the critical decision interval for evolutionary rescue (DIER) under which targeted conservation action should be applied to buffer populations undergoing ER against extinction from stochastic events and to determine the most appropriate vital rate to target to promote population recovery. We applied this model to little brown bats (Myotis lucifugus) affected by white‐nose syndrome (WNS), a fungal disease causing massive declines in several North American bat populations. Under the ER scenario, the model predicted that the DIER period for little brown bats was within 11 years of initial WNS emergence, after which they stabilized at a positive growth rate (λ = 1.05). By comparing our model results with population trajectories of multiple infected hibernacula across the WNS range, we concluded that ER is a potential explanation of observed little brown bat population trajectories across multiple hibernacula within the affected range. Our approach provides a tool that can be used by all managers to provide testable hypotheses regarding the occurrence of ER in declining populations, suggest empirical studies to better parameterize the population genetics and conservation‐relevant vital rates, and identify the DIER period during which management strategies will be most effective for species conservation.  相似文献   
958.
Many long‐distance migrating shorebird (i.e., sandpipers, plovers, flamingos, oystercatchers) populations are declining. Although regular shorebird monitoring programs exist worldwide, most estimates of shorebird population trends and sizes are poor or nonexistent. We built a state‐space model to estimate shorebird population trends. Compared with more commonly used methods of trend estimation, state‐space models are more mechanistic, allow for the separation of observation and state process, and can easily accommodate multivariate time series and nonlinear trends. We fitted the model to count data collected from 1990 to 2013 on 18 common shorebirds at the 2 largest coastal wetlands in southern Africa, Sandwich Harbour (a relatively pristine bay) and Walvis Bay (an international harbor), Namibia. Four of the 12 long‐distance migrant species declined since 1990: Ruddy Turnstone (Arenaria interpres), Little Stint (Calidris minuta), Common Ringed Plover (Charadrius hiaticula), and Red Knot (Calidris canutus). Populations of resident species and short‐distance migrants increased or were stable. Similar patterns at a key South African wetland suggest that shorebird populations migrating to southern Africa are declining in line with the global decline, but local conditions in southern Africa's largest wetlands are not contributing to these declines. State‐space models provide estimates of population levels and trends and could be used widely to improve the current state of water bird estimates.  相似文献   
959.
Conservation scientists and resource managers often have to design monitoring programs for species that are rare or patchily distributed across large landscapes. Such programs are frequently expensive and seldom can be conducted by one entity. It is essential that a prospective power analysis be undertaken to ensure stated monitoring goals are feasible. We developed a spatially based simulation program that accounts for natural history, habitat use, and sampling scheme to investigate the power of monitoring protocols to detect trends in population abundance over time with occupancy‐based methods. We analyzed monitoring schemes with different sampling efforts for wolverine (Gulo gulo) populations in 2 areas of the U.S. Rocky Mountains. The relation between occupancy and abundance was nonlinear and depended on landscape, population size, and movement parameters. With current estimates for population size and detection probability in the northern U.S. Rockies, most sampling schemes were only able to detect large declines in abundance in the simulations (i.e., 50% decline over 10 years). For small populations reestablishing in the Southern Rockies, occupancy‐based methods had enough power to detect population trends only when populations were increasing dramatically (e.g., doubling or tripling in 10 years), regardless of sampling effort. In general, increasing the number of cells sampled or the per‐visit detection probability had a much greater effect on power than the number of visits conducted during a survey. Although our results are specific to wolverines, this approach could easily be adapted to other territorial species. Poder de Análisis Espacialmente Explícito para el Monitoreo Basado en Ocupación del Glotón (Gulo gulo) en las Montañas Rocallosas de Estados Unidos  相似文献   
960.
Abstract: Identifying how social organization shapes individual behavior, survival, and fecundity of animals that live in groups can inform conservation efforts and improve forecasts of population abundance, even when the mechanism responsible for group‐level differences is unknown. We constructed a hierarchical Bayesian model to quantify the relative variability in survival rates among different levels of social organization (matrilines and pods) of an endangered population of killer whales (Orcinus orca). Individual killer whales often participate in group activities such as prey sharing and cooperative hunting. The estimated age‐specific survival probabilities and survivorship curves differed considerably among pods and to a lesser extent among matrilines (within pods). Across all pods, males had lower life expectancy than females. Differences in survival between pods may be caused by a combination of factors that vary across the population's range, including reduced prey availability, contaminants in prey, and human activity. Our modeling approach could be applied to demographic rates for other species and for parameters other than survival, including reproduction, prey selection, movement, and detection probabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号