首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1811篇
  免费   169篇
  国内免费   103篇
安全科学   113篇
废物处理   12篇
环保管理   544篇
综合类   534篇
基础理论   278篇
环境理论   54篇
污染及防治   21篇
评价与监测   96篇
社会与环境   302篇
灾害及防治   129篇
  2024年   5篇
  2023年   60篇
  2022年   42篇
  2021年   55篇
  2020年   71篇
  2019年   110篇
  2018年   110篇
  2017年   119篇
  2016年   109篇
  2015年   120篇
  2014年   61篇
  2013年   194篇
  2012年   111篇
  2011年   110篇
  2010年   90篇
  2009年   64篇
  2008年   64篇
  2007年   60篇
  2006年   73篇
  2005年   48篇
  2004年   61篇
  2003年   45篇
  2002年   37篇
  2001年   34篇
  2000年   62篇
  1999年   54篇
  1998年   17篇
  1997年   23篇
  1996年   11篇
  1995年   5篇
  1994年   6篇
  1993年   18篇
  1992年   3篇
  1991年   8篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有2083条查询结果,搜索用时 0 毫秒
941.
Climate change-related impacts have the capacity to substantially influence Small Island Developing States (SIDS) in the Caribbean. Currently, many SIDS are engaged in large-scale vulnerability assessments that aim to identify, analyse, and inform solutions to mitigate climate change-related impacts. Many of these assessments, while useful, place little emphasis on the local stakeholders' perceptions of climate change. One such Caribbean community impacted by climate-related change is Providence Island in Colombia. Using a vulnerability assessment framework (Marshall, P.A. et al. 2010. A framework for social adaptation to climate change: sustaining tropical coastal communities and industries. Gland: IUCN Publication Services), researchers interviewed island residents (N = 23) about their perceptions of climate change, impacts on the local environment, and how the island community may adapt. All interviews were transcribed and analysed using a priori and open coding to identify patterns of and relationships between stakeholders' responses. Results indicate that local perceptions of climate change are linked to (1) environmental knowledge, (2) environmental awareness, attitudes, and beliefs, and (3) perceptions of risk. Implications for local adaptive strategies, education, communication, and suggestions for engagement at the local level are discussed.  相似文献   
942.
以华北农牧交错带为切入点,选取晋北长城沿线大同市8个气象站点,利用线性趋势分析、5年滑动、M-K检验以及Thormthwaite模型,分析了近38年来大同市气候变化及其气候生产力的演变特征.结果表明:①近38年大同市气温呈现显著增加趋势,且在1994年发生突变.②降水量呈现不显著的减少趋势.③气候生产力呈现缓慢增加趋势,出现南部高于北部,东西方向上呈现由中心向四周递增.④暖湿气候的气候生产力呈现正距平,最适合作物生长;冷干气候的气候生产力呈现负距平,最不适合作物生长.现阶段气候暖干化趋势显著,因此研究气候变化对气候生产力有重要意义.  相似文献   
943.
Brown, Casey, William Werick, Wendy Leger, and David Fay, 2011. A Decision‐Analytic Approach to Managing Climate Risks: Application to the Upper Great Lakes. Journal of the American Water Resources Association (JAWRA) 47(3):524‐534. DOI: 10.1111/j.1752‐1688.2011.00552.x Abstract: In this paper, we present a risk analysis and management process designed for use in water resources planning and management under climate change. The process incorporates climate information through a method called decision‐scaling, whereby information related to climate projections is tailored for use in a decision‐analytic framework. The climate risk management process begins with the identification of vulnerabilities by asking stakeholders and resource experts what water conditions they could cope with and which would require substantial policy or investment shifts. The identified vulnerabilities and thresholds are formalized with a water resources systems model that relates changes in the physical climate conditions to the performance metrics corresponding to vulnerabilities. The irreducible uncertainty of climate change projections is addressed through a dynamic management plan embedded within an adaptive management process. Implementation of the process is described as applied in the ongoing International Upper Great Lakes Study.  相似文献   
944.
Trends have been analysed for 12 years ofchemical data from six mountain lakes in the UK AcidWaters Monitoring Network (AWMN). With minimal localanthropogenic impacts, these sites offer the bestavailable opportunity for clear identification of surfacewater chemical response to external factors, whethernatural or anthropogenic. Results indicate that naturalclimatic variations have had a major impact on lakechemistry, through fluctuations in (i) intensity ofstorms, which cause dilution of weathering-derived basecations, and/or displacement of hydrogen and aluminiumions on soil exchange sites by deposited marine basecations; and (ii) winter temperature, which is thought tobe inversely related to spring nitrate (NO3) maxima.Both climatic factors can be linked to the North AtlanticOscillation. For the first decade of AWMN monitoringthese natural `confounding factors' to a significantextent obscured any recovery from acidification due todeclining anthropogenic sulphur deposition. However, theadditional data presented here provide strengtheningevidence for chemical recovery at a number of sites, atwhich decreases in sulphate (SO4), acidity andlabile aluminium can now be identified. It is believedthat changes at these sensitive mountain lake sites mayherald more widespread recovery in UK surface waters aspollutant emissions decline further. However, largeincreases in dissolved organic carbon, and hence inorganic acidity, may have partially offset reductions inmineral acidity. The cause of these increases remainsuncertain, but may be linked to climatic change.  相似文献   
945.
利用1961-2018年黑龙江省61个站冬季逐日平均气温资料,以连续5 d日平均气温正距平超过1倍标准差为标准,对黑龙江省冬季异常暖事件进行了判断,并按照0.3个标准差将其分为一级、二级、三级异常暖气候事件。分析表明黑龙江省在58年间冬季共发生35次异常暖气候事件,累计天数270 d。异常暖气候事件发生有较明显的周期性变化,1961-1986年和2009-2018年为低发期、1987-2008年为高发期。71.4%的异常暖事件发生在1986年后,说明异常暖事件的频繁发生对1980年代中后期该省冬季气温显著升高有直接贡献。1961-2018年该省冬季发生一级、二级、三级异常暖气候事件分别为9次、10次、16次。研究月尺度同期环流指数异常与黑龙江省异常暖气候事件的关系,发现北半球极涡面积异常偏小、极涡强度异常偏强、东亚槽强度异常偏弱和北极涛动异常正位相与异常暖气候事件发生有较好的对应关系,为今后黑龙江省冬季异常暖气候事件的预测提供了可靠参考。  相似文献   
946.
Light climate is of key importance for the growth, community composition of submerged macrophytes in lakes and, they, in turn, are affected by lake depth and the degree of eutrophication. To test the relationships between submerged macrophyte presence and the ratio of Secchi disk depth (SDD) to water depth, i.e. SDD/depth, nutrients and wind, we conducted an extensive sampling campaign in a macrophyte-dominated area of the eastern region (n = 36) in 2016 in Lake Taihu, China, and combined the data gathered with results from extensive physico-chemical monitoring data from the entire lake. We confirmed that SDD/Depth is the primary factor controlling the community composition of macrophytes and showed that plant abundance increased with increasing SDD/Depth ratio (p < 0.01), but that only SDD/Depth > 0.4 ensured growth of submerged macrophytes. Total phosphorus and total nitrogen also influenced the growth and community composition of macrophytes (p < 0.01), while Chla was an indirectly affecting factor by reducing underwater light penetration. Wave height significantly influenced plant abundance (p < 0.01), whereas it had little effect on the biomass (p > 0.05). The key to restore the macrophyte beds in the lake is to reduce the nutrient loading. A decrease of the water level may contribute as well in the shallow bays but will not bring plants back in the main part of the lake. As the tolerance of shade and nutrients varied among the species studied, this should be taken into account in the restoration of lakes by addition of plants.  相似文献   
947.
ABSTRACT: Competition for water resources is becoming an increasingly important issue in the southeastern U.S. The potential impacts of future precipitation and runoff estimated by a transient global climate model (HADCM2) on competing water resources in the Southeast has been conducted. Issues of agricultural management, irrigation water withdrawals, and water quality were studied over three time periods: 1974–1993, 2020–2039, and 2080–2099 in five water basins identified previously as exhibiting water-related problems. These basins, which encompass the boundary between Alabama and Mississippi, cover four important agricultural counties in Mississippi. Irrigation water requirements generated by crop growth models for corn, soybeans, and winter wheat were coupled with monthly runoff for the impacted basins estimated by the SWAT water balance model. The results of the study reveal that in the next 20–40 years water availability in the southern portions of the study area will decline as much as 10 percent during times when water requirements for agricultural production are crucial. Maintaining or expanding existing crop yields under future climate regimes may require additional irrigation water and increase competition among other uses such as domestic, industrial, recreational, and ecosystem quality.  相似文献   
948.
Assessing the Effects of Climate Change on Aquatic Invasive Species   总被引:4,自引:0,他引:4  
Abstract:  Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.  相似文献   
949.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   
950.
We assess adaptive capacity and adaptive management as measures of wastewater (WW) system resiliency using data from interviews with WW system managers (hereafter managers) impacted by past storms. Results suggest the most resilient WW systems are those with high adaptive capacities that employ an adaptive management approach to make ongoing adaptation investments over time. Greater amounts of generic adaptive capacities (i.e., skilled staff and good leadership) help smooth both day‐to‐day and emergency operations and provide a foundation for adaptive management. In turn, adaptive management helps managers both build more generic adaptive capacities, and develop and employ greater amounts and diversity of specific adaptive capacities (i.e., soft and/or hard adaptations) that are especially important for enhancing and sustaining resiliency. Adaptive management also enables managers to better understand their system's vulnerabilities, how those vulnerabilities change over time, and what specific actions may reduce those vulnerabilities. Finally, our work suggests WW system resilience critically depends on the capacities of the human systems for building resilience as much as or more so than relying only on physical infrastructure resilience. Our work contributes to filling an important gap in the literature by advancing our understanding of the human dimensions of infrastructure resilience and has practical implications for advancing resilience in the WW sector.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号