首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   613篇
  免费   26篇
  国内免费   52篇
安全科学   92篇
废物处理   45篇
环保管理   108篇
综合类   108篇
基础理论   166篇
污染及防治   70篇
评价与监测   55篇
社会与环境   30篇
灾害及防治   17篇
  2023年   10篇
  2022年   5篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   11篇
  2017年   16篇
  2016年   16篇
  2015年   25篇
  2014年   18篇
  2013年   29篇
  2012年   22篇
  2011年   60篇
  2010年   44篇
  2009年   54篇
  2008年   37篇
  2007年   37篇
  2006年   34篇
  2005年   27篇
  2004年   13篇
  2003年   27篇
  2002年   33篇
  2001年   30篇
  2000年   21篇
  1999年   23篇
  1998年   10篇
  1997年   10篇
  1996年   5篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
101.
The Swedish regulations concerning disposal of clinical radioactive waste are currently under revision and a graded approach is proposed for risk limitation purposes. To assist the revision procedures, a screening study was performed to estimate public exposures from liquid releases from hospitals to public sewers. The results showed that doses to sewage workers were above the dose constraint of 100muSva(-1) especially for (131)I and (99m)Tc. Hence, a dynamic model, LUCIA, was developed for realistic assessments in which radionuclide transportation in sewers was modelled. Probabilistic simulations were performed to obtain probability distributions of radionuclide concentrations in sludge. Concurrently, estimates of the effective doses to sewage workers decreased significantly and were below 10muSva(-1) except for (111)In and (131)I. However, the Kd-coefficients representing the partition of radioactivity between water and sludge in sewers are highly uncertain for (111)In. As shown by sensitivity studies, these values are the major determinant of the exposures in sewers.  相似文献   
102.
Preston, Stephen D., Richard B. Alexander, Gregory E. Schwarz, and Charles G. Crawford, 2011. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States. Journal of the American Water Resources Association (JAWRA) 47(5):891‐915. DOI: 10.1111/j.1752‐1688.2011.00577.x Abstract: We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long‐term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales.  相似文献   
103.
104.
This paper describes part of a programme of work undertaken at the Health and Safety Laboratory (HSL) to investigate the behaviour of selected water-reactive chemicals. Following an accidental release, such substances react exothermically with any water present, generating acidic vapours. The STAWaRS (Source Term Assessment of Water Reactive Substances) software was developed for the Health and Safety Executive (HSE) by ESR Technology to model this complex process. The aims of the study described here were to provide experimental validation of the heats of hydrolysis used within STAWaRS, and to perform sensitivity studies on selected STAWaRS input parameters.The heat of hydrolysis of acetyl chloride was measured and showed good correlation with the value used within STAWaRS. Some of the variables that influence the severity of acetyl chloride spills are examined, with reference to predictions made by the STAWaRS model. The heats of hydrolysis of titanium tetrachloride previously measured at HSL are also discussed, and the effect of adopting these experimentally derived values for modelling spills is shown for a hypothetical land use planning case. This study demonstrates the importance of using experimentally validated values for STAWaRS input parameters.  相似文献   
105.
The spread of invasive species is a major ecological and economic problem. Dynamic spread modelling is a potentially valuable tool to assist regional and central government authorities to monitor and control invasive species. To date a lack of suitable data has meant that most broad scale dispersal models have not been validated with independent datasets, and so their predictive ability and reliability has remained unscrutinised. A dynamic, stochastic dispersal model of the widely invasive plant Buddleja davidii was calibrated on European spread data and then used to project the temporal progression of B. davidii's distribution in New Zealand, starting from several different historical distributions. To assess the model's performance, we constructed an occupancy map based on the average number of simulation realisations that have a population present. The application of Receiver Operating Characteristic (ROC) curves to occupancy maps is introduced, but with specificity substituted by the proportion of available area used in a realisation. A derivative measure, the partial area under these curves when assessed through time (pAUC), is introduced and used to assess overall performance of the spread model. The model was able to attain a high level of model sensitivity, encompassing all of the known locations within the occupancy envelope. However, attempting to simulate the spread of this invasive species beyond a decade had very low model specificity. This is due to several factors, including the exponential process of spread (the further a population spreads the more sites exist from which it can spread stochastically), and the Markovian chain property of the stochastic system whereby differences between realisations compound through time. These features are seen in many reports of spread models, without being explicitly acknowledged. Our measure of pAUC through time allows a model's temporal performance and its specificity to be simultaneously assessed. While the rapid deterioration in model performance limits the utility of this type of modelling for forecasting long-term broad-scale strategic management of biological invasions, it does not necessarily limit its attractiveness for informing smaller scale and shorter term invasion management activities such as surveillance, containment and local eradication.  相似文献   
106.
To assess the impact of three different emission reduction scenarios on PM10 concentrations in Northern Italy, the TCAM multiphase model has been applied in the framework of the CityDelta III-CAFE EU project. The considered domain, that is characterized by high urban and industrial emissions and a dense road traffic, due to frequently stagnating meteorological conditions is often affected by severe PM10 levels, far from the European standard regulations. The impact evaluation has been performed in terms of both yearly mean values and 50 g/m3 exceedance days for the 2004 Base Case simulation. The results show that the three selected emission reduction scenarios up to 2020 improve air quality all over the domain, in particular, in the area with higher emission density.  相似文献   
107.
To study the interaction between species- and ecosystem-level impacts of climate change, we focus on the question of how climate-induced shifts in key species affect the positive feedback loops that lock shallow lakes either in a transparent, macrophyte-dominated state or, alternatively, in a turbid, phytoplankton-dominated state. We hypothesize that climate warming will weaken the resilience of the macrophyte-dominated clear state. For the turbid state, we hypothesize that climate warming and climate-induced eutrophication will increase the dominance of cyanobacteria. Climate change will also affect shallow lakes through a changing hydrology and through climate change-induced eutrophication. We study these phenomena using two models, the full ecosystem model PCLake and a minimal dynamic model of lake phosphorus dynamics. Quantitative predictions with the complex model show that changes in nutrient loading, hydraulic loading and climate warming can all lead to shifts in ecosystem state. The minimal model helped in interpreting the non-linear behaviour of the complex model. The main output parameters of interest for water quality managers are the critical nutrient loading at which the system will switch from clear to turbid and the much lower critical nutrient loading – due to hysteresis – at which the system switches back. Another important output parameter is the chlorophyll-a level in the turbid state. For each of these three output parameters we performed a sensitivity analysis to further understand the dynamics of the complex model PCLake. This analysis showed that our model results are most sensitive to changes in temperature-dependence of cyanobacteria, planktivorous fish and zooplankton. We argue that by combining models at various levels of complexity and looking at multiple aspects of climate changes simultaneously we can develop an integrated view of the potential impact of climate change on freshwater ecosystems.  相似文献   
108.
With the advancement of computational systems and the development of model integration concepts, complexity of environmental model systems increased. In contrast to that, theory and knowledge about > environmental systems as well as the capability for environmental systems analyses remained, to a large extent, unchanged. As a consequence, model conceptualization, data gathering, and validation, have faced new challenges that hardly can be tackled by modellers alone. In this discourse-like review, we argue that modelling with reliable simulations of human-environmental interactions necessitate linking modelling and simulation research much stronger to science fields such as landscape ecology, community ecology, eco-hydrology, etc. It thus becomes more and more important to identify the adequate degree of complexity in environmental models (which is not only a technical or methodological question), to ensure data availability, and to test model performance. Even equally important, providing problem specific answers to environmental problems using simulation tools requires addressing end-user and stakeholder requirements during early stages of problem development. In doing so, we avoid modelling and simulation as an end of its own.  相似文献   
109.
EcoTroph (ET) is a model articulated around the idea that the functioning of aquatic ecosystems may be viewed as a biomass flow moving from lower to higher trophic levels, due to predation and ontogenetic processes. Thus, we show that the ecosystem biomass present at a given trophic level may be estimated from two simple equations, one describing biomass flow, the other their kinetics (which quantifies the velocity of biomass transfers towards top predators). The flow kinetic of prey partly depends on the abundance of their predators, and a top-down equation expressing this is included in the model. Based on these relationships, we simulated the impact on a virtual ecosystem of various exploitation patterns. Specifically, we show that the EcoTroph approach is able to mimic the effects of increased fishing effort on ecosystem biomass expected from theory. Particularly, the model exhibits complex patterns observed in field data, notably cascading effects and ‘fishing down the food web’. EcoTroph also provides diagnostic tools for examining the relationships between catch and fishing effort at the ecosystem scale and the effects of strong top-down controls and fast-flow kinetics on ecosystems resilience. Finally, a dynamic version of the model is derived from the steady-state version, thus allowing simulations of time series of ecosystem biomass and catches. Using this dynamic model, we explore the propagation of environmental variability in the food web, and illustrated how exploitation can induce a decrease of ecosystem stability. The potential for applying EcoTroph to specific ecosystems, based on field data, and similarities between EcoTroph and Ecopath with Ecosim (EwE) are finally discussed.  相似文献   
110.
Individual transferable quotas (ITQs) are increasingly seen as a way to make fisheries more profitable and halt over-capitalisation. ITQs allocate to users of a resource a share of a total allowable catch (TAC) which they are free to use, lease, or sell. We outline an approach to modelling the effect of an ITQ system in a multi-species, multi-sector fishery and apply it to the Coral Reef Fin Fish Fishery (CRFFF) in Queensland, Australia. An ITQ model, based on the assumption that operators seek to maximize profits, simulates the use of tradeable quota units by operators in the fishery, taking account of the initial quota allocation to operators, seasonal fish prices and individual operator variable costs, their fishing efficiency and experience, and constraints on vessel movements. Rationalization of the fishery is predicted to occur under an ITQ system for the CRFFF, which will lead to reductions in effort, increases in profits, and changes over time in quota prices. The ecological consequences of transferable quota in the multi-species fishery are seen in the catch and discard levels of the less profitable species, even though a TAC was set. This had flow-on effects on biomass. For example, simulations showed that the TAC for the primary target species, coral trout, was used more fully than that for a less valuable target species, red throat emperor, and that this was achieved through increased discarding of red throat emperor. Catches of both coral trout and red throat emperor that were derived from the model were higher than those recently observed in the fishery. The effort predicted by the model, however, closely approximated the actual effort observed in the fishery following implementation of ITQ management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号