全文获取类型
收费全文 | 390篇 |
免费 | 32篇 |
国内免费 | 107篇 |
专业分类
安全科学 | 138篇 |
废物处理 | 11篇 |
环保管理 | 35篇 |
综合类 | 178篇 |
基础理论 | 83篇 |
污染及防治 | 67篇 |
评价与监测 | 10篇 |
社会与环境 | 3篇 |
灾害及防治 | 4篇 |
出版年
2023年 | 7篇 |
2022年 | 6篇 |
2021年 | 16篇 |
2020年 | 25篇 |
2019年 | 15篇 |
2018年 | 11篇 |
2017年 | 9篇 |
2016年 | 10篇 |
2015年 | 19篇 |
2014年 | 20篇 |
2013年 | 31篇 |
2012年 | 44篇 |
2011年 | 47篇 |
2010年 | 32篇 |
2009年 | 43篇 |
2008年 | 33篇 |
2007年 | 22篇 |
2006年 | 24篇 |
2005年 | 21篇 |
2004年 | 20篇 |
2003年 | 8篇 |
2002年 | 12篇 |
2001年 | 8篇 |
2000年 | 5篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 6篇 |
1995年 | 4篇 |
1994年 | 4篇 |
1993年 | 5篇 |
1992年 | 3篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1981年 | 1篇 |
1973年 | 1篇 |
排序方式: 共有529条查询结果,搜索用时 15 毫秒
231.
232.
珠江口典型河段内分泌干扰物的空间分布及风险评价 总被引:3,自引:0,他引:3
选择珠江口典型河段为研究对象,调查上覆水和沉积物中5种典型内分泌干扰物(EDCs)4-辛基酚(4-t-OP)、4-壬基酚(4-NP)、双酚A(BPA)、三氯生(TCS)和三氯卡班(TCC)的空间分布特征,并利用风险商值法(RQ)对其上覆水及沉积物进行风险评价.结果表明,5种EDCs在珠江河流上覆水和沉积物样品中均有检出,水体中4-t-OP、4-NP、BPA、TCC、TCS的水体质量浓度分别为:49.19~512.82、112.66~717.31、23.54~2189.88、1.90~120.99、1.51~54.75 ng·L~(-1).沉积物中4-t-OP、4-NP、BPA、TCC、TCS的沉积物质量分数分别为:56.60~1606.56、69.52~6524.35、18.55~522.45、1.54~179.66、0.71~130.92 ng·g-1.5种EDCs在沉积物和上覆水中的空间分布基本遵循上游到下游逐渐减少的趋势.4-t-OP、4-NP、BPA、TCC和TCS的风险商(RQ)在上覆水和沉积物中的范围分别为0.03~4.20和0.026~149.28.对生态健康产生极大压力.沉积物来源、粒度分布和有机质含量均对EDCs在沉积物中的富集有影响,且主要影响因素为沉积物有机质含量. 相似文献
233.
BACKGROUND: Each year millions of liters of fire-retardant chemicals are applied to wildfires across the nation. Recent laboratory studies with long-term fire-retardant chemicals indicate a significant photoenhanced toxicity of products containing sodium ferrocyanide corrosion inhibitors. Our objective of this study was to determine the toxicity of fire-retardant chemicals to fathead minnows during exposure in experimental outdoor streams. METHODS: Stream tests were conducted to determine the potential toxicity of a pulse of exposure as might occur when fire retardant chemical is rinsed from the watershed by rainfall. Two artificial 55-meter experimental streams were dosed with different concentrations of Fire-Trol GTS-R, or uncontaminated for a control. Replicate groups of fathead minnows were added to screened containers (10 fish per container) and exposed to retardant chemicals in the recirculating flow of the stream for up to 6 hours. RESULTS AND DISCUSSION: Under field conditions toxicity of GTS-R only occurred in the presence of sunlight. When GTS-R was tested on sunny days, 100% mortality occurred. However, when tested during heavily overcast conditions, no mortality occurred. CONCLUSIONS: Lethal concentrations of cyanide were measured when GTS-R with YPS exposures were conducted under sunny conditions, but not under cloudy conditions, indicating that a minimum UV level is necessary to induce toxicity as well as the release of cyanide from YPS. The toxicity observed with GTS-R was likely associated with lethal concentrations of cyanide. Rainwater runoff following applications of this fire-retardant at the recommended rate could result in lethal concentrations in small ponds and streams receiving limited water flow under sunny conditions. RECOMMENDATIONS AND OUTLOOK: In addition to avoiding application to aquatic habitats, it is important to consider characteristics of the treated site including soil binding affinity and erosive properties. 相似文献
234.
Charles G. Crawford 《Journal of the American Water Resources Association》2004,40(2):485-502
ABSTRACT: The Food Quality Protection Act of 1996 requires that human exposure to pesticides through drinking water be considered when establishing pesticide tolerances in food. Several systematic and seasonally weighted systematic sampling strategies for estimating pesticide concentrations in surface water were evaluated through Monte Carlo simulation, using intensive datasets from four sites in northwestern Ohio. The number of samples for the strategies ranged from 4 to 120 per year. Sampling strategies with a minimal sampling frequency outside the growing season can be used for estimating time weighted mean and percentile concentrations of pesticides with little loss of accuracy and precision, compared to strategies with the same sampling frequency year round. Less frequent sampling strategies can be used at large sites. A sampling frequency of 10 times monthly during the pesticide runoff period at a 90 km2 basin and four times monthly at a 16,400 km2 basin provided estimates of the time weighted mean, 90th, 95th, and 99th percentile concentrations that fell within 50 percent of the true value virtually all of the time. By taking into account basin size and the periodic nature of pesticide runoff, costs of obtaining estimates of time weighted mean and percentile pesticide concentrations can be minimized. 相似文献
235.
No energy technology is risk free when all aspects of its utilization are taken into account. Every energy technology has some attendant direct and indirect health and safety concerns. Solar technologies examined in this paper are wind, ocean thermal energy gradients, passive, photovoltaic, satellite power systems, low- and high-temperature collectors, and central power stations, as well as tidal power. For many of these technologies, insufficient historical data are available from which to assess the health risks and environmental impacts. However, their similarities to other projects make certain predictions possible. For example, anticipated problems in worker safety in constructing ocean thermal energy conversion systems will be similar to those associated with other large-scale construction projects, like deep-sea oil drilling platforms. Occupational hazards associated with photovoltaic plant operation would be those associated with normal electricity generation, although for workers involved in the actual production of photovoltaic materials, there is some concern for the toxic effects of the materials used, including silicon, cadmium, and gallium arsenide.Satellite power systems have several unique risks. These include the effects of long-term space travel for construction workers, effects on the ozone layer and the attendant risk of skin cancer in the general public, and the as-yet-undetermined effects of long-term, low-level microwave exposure. Hazards may arise from three sources in solar heating and cooling systems: water contamination from corrosion inhibitors, heat transfer fluids, and bactericides; collector over-heating, fires, and out-gassing and handling and disposal of system fluids and wastes. Similar concerns exist for solar thermal power systems. Even passive solar systems may increase indoor exposure levels to various air pollutants and toxic substances, eitherdirectly from the solar system itself or indirectly by trapping released pollutants from furnishings, building materials, and indoor combustion.Operated by Union Carbide Corporation under contract W-7405-eng-26 for the U.S. Department of Energy. 相似文献
236.
Despite the fact that the information about past accidents is an integral part of accident prevention, the information about industrial accidents is not commonly available in food and agricultural sectors. Spray dryer plants for dairy products are not an exception. The aim of this paper is the creation of the representative database for industrial spray drying accidents in order to identify their major causes. The paper is divided into 8 chapters. The first two chapters deal with the general information about technology of spray drying of dairy products. The third chapter provides the outputs from the authors' database containing records of 25 accidents in milk drying facilities in Europe. These accidents took place between 1999 and 2019 in six European countries. Based on the accident database, the most common causes of accidents were identified. Processes that can cause a fire, an explosion, or damage to environment are described in the fourth, fifth and sixth chapter. The seventh chapter deals with process, technical and organizational measures; these were discussed using literature research and the results of the accident database. The eighth chapter is the conclusion with a focus on further improvement of process safety through newly developed protective tools. 相似文献
237.
Abstract: Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater‐treatment‐plant effluent, have been well documented, but other sources, particularly wet‐weather discharges from combined‐sewer‐overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater‐treatment‐plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP‐effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10‐100 μg/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 μg/l, and urban stream‐stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP‐effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2‐butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 μg/l) because CSO effluent is untreated, and were higher in urban‐stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near‐surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. 相似文献
238.
Wei Zhang Arturo A. Keller Dapan Yue Xuejun Wang 《Journal of the American Water Resources Association》2009,45(4):1009-1018
Abstract: Pollutant loading from storm runoff is considered to be an important component of nonpoint source pollution in urban areas. In developing countries, because of the accelerated urbanization and motorization, storm runoff pollution has become a challenge for improving aquatic environmental quality. An effective storm runoff management plan needs to be developed, and questions concerning how much and which proportion of a storm should be treated need to be answered. In this study, a model is developed to determine the fraction of storm runoff that needs to be treated to meet the discharge standard within a given probability. The model considers that the pollutants can be mobilized during the early stage of a storm. The model is applied to a field study of polycyclic aromatic hydrocarbons (PAHs) in road runoff in Beijing, China. In this case, the probability that the PAH load will be mobilized with suspended sediments by the earlier portion of the flush is 73%. Given the high PAH loading in the study area and the referenced discharge standard, the probability that the entire runoff should be captured and treated is 94%. Thus, urban planners need to consider treatment systems for the majority of the storms in this area, whether the PAH load is in the first flush or not. This methodology can be applied to other regions where PAH loads may result in different management outcomes. 相似文献
239.
Background Different types of indicators have been developed to describe the impact of chemicals on society and environment. Due to
the high number of substances and their different types of use, most of these indicators are directed to specific areas of
interest – regarding workplace safety, environmental health or consumer health. They address a specific subset of chemicals
and can be used for monitoring enterprise-specific, national or international management measures.
Main Features A survey of existing indicators for chemicals has shown that indicators already exist for a remarkable number of problem
fields. As soon as the release and the environmental fate of chemicals are taken into account, the complexity of the approaches
increases considerably. The distinction between indicators for drivers, pressures, state, impacts and responses, as proposed
by the European Environmental Agency, supports the identification of proper indicators for a specific type of problem.
Discussion and Conclusions. No single indicator exists which is able to cover the whole range of chemicals and their applications. Several
indicator approaches cover at least a subset of the most relevant substances. If they are intended to be used for European
monitoring, robust data must be provided by EU Member States.
Chemicals in enterprises (ancillary inputs as well as process chemicals) are an important element of in-plant material flow
management – in terms of occupational safety and health as well as environmental protection. Existing indicators for hazardous
chemicals can be a valuable tool for process and product refinement regarding hazardous chemicals, especially for enterprises.
Outlook Indicators for production and impact of chemicals, as well as policy performance indicators, are essential elements in order
to monitor the management of chemicals. They have to be established for the national and for the EU level. 相似文献
240.
A new method for generating reactive species to destroy toxic organic chemicals has been developed. This method reacts yellow phosphorus with O2, in moist air to produce species such as O,O3, PO, and PO2, which are capable of reacting with various types of organics. Toxic organic com-pounds are converted to small molecular wight organic acids, aldehydes, and/or alcohols, while yel-low phosphonis is oxidital into phosphoric acid, which may be recovered as a valuable byproduct.This technique has ben demonstrated to be effective for destroying many types of toxic organiccompounds. including PAH, aromatic chlorides, amines, alcohols, and acids, nitro-aromatics,heterocyclic hydrocarbons, PCB, aliphatic chlorides and sulfides, dyes, and pesticides. 相似文献