首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   468篇
  免费   25篇
  国内免费   110篇
安全科学   9篇
环保管理   258篇
综合类   219篇
基础理论   57篇
污染及防治   19篇
评价与监测   25篇
社会与环境   12篇
灾害及防治   4篇
  2023年   10篇
  2022年   4篇
  2021年   9篇
  2020年   19篇
  2019年   22篇
  2018年   11篇
  2017年   11篇
  2016年   17篇
  2015年   20篇
  2014年   16篇
  2013年   28篇
  2012年   35篇
  2011年   16篇
  2010年   22篇
  2009年   14篇
  2008年   24篇
  2007年   19篇
  2006年   28篇
  2005年   24篇
  2004年   14篇
  2003年   20篇
  2002年   15篇
  2001年   8篇
  2000年   11篇
  1999年   11篇
  1998年   11篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   5篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   4篇
  1984年   5篇
  1983年   5篇
  1981年   8篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   5篇
  1975年   3篇
  1973年   3篇
  1972年   5篇
  1971年   5篇
  1970年   3篇
排序方式: 共有603条查询结果,搜索用时 62 毫秒
81.
西藏地区春青稞耗水特征及适宜灌溉制度探讨   总被引:5,自引:0,他引:5  
以中科院拉萨高原生态试验站为依托,通过开展春青稞生长与土壤水分定位观测实验,利用SHAW模型实现对春青稞农田蒸散发与土壤水深层渗漏与补给过程模拟,分析了春青稞的耗水特征,并对其适宜的灌溉制度进行了初步探讨:①春青稞生长期间,耗水450 mm左右,其中,分蘖—拔节、拔节—抽穗、抽穗—蜡熟这3个阶段是春青稞的耗水旺期,耗水量占整个生长期的72%。把握住该时期的水分供应,对提高作物产量十分重要。②在春青稞的需水关键期降水量仅能满足作物需水的58%,必须补充人工灌溉;但现行的灌溉制度由于灌溉量较大,不仅加大土壤蒸发,更造成较大的深层渗漏。③在播种—出苗、拔节—抽穗期分别灌溉50 mm,抽穗—蜡熟期灌溉60 mm,共减少灌溉用水125 mm后,深层渗漏减少了81%(131 mm);深层土壤水向上补给量增加了55%(44 mm)。节水灌溉不仅减少了土壤蒸发与深层渗漏也促使深层土壤水向上补给根系层,应该大力推广这一灌溉制度。  相似文献   
82.
成诚  王金霞 《自然资源学报》2010,25(7):1079-1087
论文采用两年的面板数据实证研究了我国黄河流域灌区灌溉管理改革的进展、特征及决定因素。研究结果表明,自20世纪90年代开始,黄河流域灌区灌溉管理改革取得了很大的进展,传统的集体管理已经逐步被承包管理和用水协会管理所取代,不同管理制度下农民参与的程度与管理的透明度都有所区别,政府的政策干预在促进灌溉管理改革上发挥了十分重要的作用,改革具有明显的政策导向性。在未来的灌溉管理改革中,政府部门应进一步出台相关鼓励改革政策,积极引导广大农民参与到改革的事业中,促进改革在更加广阔的农村地区的有效推进和良性发展。  相似文献   
83.
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
84.
Use of models to simulate crop production has become important in optimizing irrigation management in arid and semiarid regions. However, applicability and performance of these models differ across regions, due to differences in environmental and management factors. The AquaCrop model was used to simulate soil water content (SWC), evapotranspiration (ET), and yield for grain sorghum under different irrigation regimes and dryland conditions at two sites in Central and Southern High Plains. Prediction error (Pe), estimated as the difference between simulated and measured divided by measured, for SWC ranged from ?17% to 4% in fully irrigated, ?3% to ?10% in limited irrigated, and ?16% to 25% in dryland treatments. The Pe within ±4%, ?5%, and ?17% to 24% were attained for seasonal ET under fully irrigated, limited irrigated, and dryland conditions, respectively. Pe values for grain yield were within those previously reported and ranged from ?10% to 12%, ?12% to 7%, and 9% to 17% for fully irrigated, limited irrigated and dryland conditions, respectively. Overall performance of the AquaCrop model showed it could be used as an effective tool for evaluating the impacts of variable crop and irrigation managements on the production of grain sorghum in the study area. Finally, the application of the model in the study area revealed planting date has a significant impact on sorghum yield and irrigation requirements, but the impact of planting density was negligible. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
85.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
86.
While there are currently a number of irrigated land datasets available for the western United States (U.S.), there is uncertainty regarding in how they relate to each other. To help understand the characteristics of available irrigated datasets, we compared (1) the Cropland Data Layer (CDL), (2) Moderate Resolution Imaging Spectroradiometer Irrigated Agriculture Dataset (IAD), (3) Digitized Irrigated Land (DIL), and (4) Consumptive Use for Irrigation (CUI) data in Arizona and Colorado, U.S. These datasets were derived from multiple sources at various spatial resolutions and temporal scales. We found spatial and temporal trends among all of them. The datasets showed decreases in irrigated land area in Arizona during the 2000–2010 time period. The change ranges and ratios were similar in all Arizona datasets. Irrigated land in Colorado decreased in DIL and CUI but increased in IAD and CDL. The agreement within the same type of dataset during different time periods was from 60% to 80% (R2 from 0.35 to 0.72) in Arizona and from 50% to 80% (R2 from 0.23 to 0.68) in Colorado. DIL had the highest agreement (80%) in both states. The agreement among different datasets acquired at approximately the same time frame ranged from 51% to 63% (R2 from 0.14 to 0.31) in Arizona and from 47% to 69% (R2 from 0.32 to 0.40) in Colorado. The results from this study support a greater understanding of the multiresolution and multitemporal nature of these datasets for various applications.  相似文献   
87.
The current paper discusses the multi‐strainer technique developed to augment usable water by the combined use of saline and non‐saline aquifers in locations where a freshwater aquifer is underlain or overlain by a saline water aquifer. The multi‐strainer technique evaluates design criteria for the formulation of multi‐strainer schemes to supply water at an acceptable salinity limit by combined use of the saline and non‐saline aquifers. The design ratio of discharges can be maintained by adjusting the strainers’ lengths in the saline and non‐saline aquifers. The multi‐strainer scheme has been applied in the coastal aquifers of Bangladesh and found to be effective at lowering the water salinity concentrations to acceptable levels, thus increasing the availability of water for sustainable use. The multi‐strainer scheme should be designed based on the thickness of the aquifer layers to be screened, the salinity concentrations of the screened layers, and the level of salinity concentration to be maintained.  相似文献   
88.
ABSTRACT: Climate change has the potential to have dramatic effects on the agricultural sector nationally and internationally as documented in many research papers. This paper reports on research that was focused on a specific crop growing area to demonstrate how farm managers might respond to climate-induced yield changes and the implications of these responses for agricultural water use. The Hadley model was used to generate climate scenarios for important agricultural areas of Georgia in 2030 and 2090. Linked crop response models indicated generally positive yield changes, as increased temperatures were associated with increased precipitation and CO2. Using a farm management model, differences in climate-induced yield impacts among crops led to changes in crop mix and associated water use; non-irrigated cropland received greater benefit since irrigated land was already receiving adequate moisture. Model results suggest that farm managers will increase cropping intensity by decreasing fallowing and increasing double cropping; corn acreage decreased dramatically, peanuts decreased moderately and cotton and winter wheat increased. Water use on currently irrigated cropland fell. The potential for increased water use through conversion of agriculturally important, but currently non-irrigated, growing areas is substantial.  相似文献   
89.
不同灌溉方式冬小麦农田生态系统碳平衡研究   总被引:7,自引:0,他引:7  
全球气候变暖趋势明显,陆地生态系统碳循环的研究成为目前的研究热点,而农田生态系统是陆地生态系统的重要组成部分,由于农田生态系统是受人类强烈调节与控制的复合系统,其碳循环受各类农作措施的影响极大。新疆地处干旱区,水分条件是农田碳循环的最重要限制因子。为此,分析不同灌溉方式对冬小麦(Triticum aestivuml)农田生态系统碳平衡的影响,从而提出有利于新疆冬小麦生产的固碳减排的灌溉方式。试验于2012—2013年在伊宁县科技示范园冬小麦试验田进行,选择伊农18冬小麦品种为供试材料,确定滴灌和漫灌为两个试验主因子并设置小区。试验自冬小麦返青开始至完全成熟结束,期间平均每7天采1次样,其中用典型样株法采集小麦植株,分根、茎、叶等不同器官单独烘干测定植株固碳量;用静态钠石灰吸收法测定冬小麦土壤呼吸;收集整理已发表国内外文献中的各类碳排放参数确定本研究中所需参数;采用王小彬的碳平衡计算方法分析不同灌溉方式农田生态系统碳平衡,据此对滴灌和漫灌两种灌溉方式的冬麦农田作物生物量固碳、土壤碳排放量和作物生产过程中物质投入的间接碳排放量,以及两种灌溉方式下冬麦农田生态系统净碳值进行分析。试验结果表明:滴灌条件下冬麦农田生态系统小麦的固碳量、土壤碳排放总量分别比漫灌小麦的高出15.38%和11.43%,冬小麦穗是差异形成的主要原因;而农业生产资料排碳总量比漫灌少排3.88%;但无论是滴灌还是漫灌,耗电碳排放量均占农业生产资料碳排放总量的59%以上,是农业生产资料碳排放的第一大来源。两种灌溉方式下冬小麦田生态系统的净碳值均呈现出固碳并存在显著差异(p〈0.01),且滴灌冬麦农田生态系统净碳值比漫灌高25.39%。因此,新疆冬小麦生产中采用滴灌方式更有利于农田生态系统的固碳,  相似文献   
90.
Result of this study shows that elevated colorectal cancer risk in Mississippi River floodplain of the United States is likely linked to historically high pesticide application. Mississippi River basin produces about 80% of major US crops and has about two-thirds of US pesticides used for agriculture. Historically, heavy pesticide application and agricultural irrigation were reported to result in high pesticide residues in surface water, fish and wells of Mississippi embayment. Risk ratio of colorectal cancer incidence in 86 counties of Mississippi River floodplain was about 29% higher than that of other counties in the 48 contiguous states. Risk ratio of colon cancer mortality in 63 counties of Mississippi embayment was 33% higher than that of other counties in the 48 states between 1999 and 2016. Risk ratios of colorectal cancer incidence and colon cancer mortality in Mississippi River floodplain are higher after smoking and diabetes factors were filtered off. Previous studies have linked exposure to pesticide with type-II diabetes and the latter was linked to increasing colon cancer risk by about 27%. Result here suggests that pesticide may be an independent risk factor directly associated with elevated colon cancer risk in Mississippi River floodplain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号