首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   559篇
  免费   38篇
  国内免费   72篇
安全科学   109篇
废物处理   9篇
环保管理   24篇
综合类   254篇
基础理论   20篇
污染及防治   43篇
评价与监测   29篇
社会与环境   14篇
灾害及防治   167篇
  2024年   2篇
  2023年   5篇
  2022年   13篇
  2021年   25篇
  2020年   17篇
  2019年   9篇
  2018年   9篇
  2017年   13篇
  2016年   28篇
  2015年   26篇
  2014年   15篇
  2013年   28篇
  2012年   58篇
  2011年   74篇
  2010年   36篇
  2009年   24篇
  2008年   25篇
  2007年   39篇
  2006年   27篇
  2005年   39篇
  2004年   26篇
  2003年   16篇
  2002年   21篇
  2001年   17篇
  2000年   9篇
  1999年   8篇
  1998年   18篇
  1997年   8篇
  1996年   3篇
  1995年   6篇
  1994年   9篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有669条查询结果,搜索用时 15 毫秒
91.
某水电站联合调度中心建设用地地质灾害危险性评估研究   总被引:1,自引:0,他引:1  
通过分析水电站联合调度中心建设用地滑坡形成的原因,对建设用地场区可能出现的3种工况进行了稳定性评价。结果表明:Ⅰ区的地质灾害危险性中等,Ⅱ区的地质灾害危险性小。总体来说,该场址区不存在严重的地质缺陷和工程难以有效控制的地质灾害,整个建设用地的使用是适宜的。但是,需要对其后侧斜坡进行有效治理。  相似文献   
92.
黄土高原滑坡及其利用的探讨   总被引:5,自引:0,他引:5  
李昭淑 《灾害学》1990,(2):41-46
黄土高原滑坡是十分严重的自然灾害,往往能给人民生命财产造成极大损失,又是黄土高原严重水土流失的主要产沙方式。如何变害为利,利用滑坡天然聚湫以及利用滑坡机理,发展人工滑坡,促进水保、治理沟谷,发展农业生产是黄土高原研究的新课题。  相似文献   
93.
介绍了LSH-02G克劳斯尾气加氢催化剂的生产工艺及工业应用情况。LSH-02G催化剂具有一定的大孔,可减少CO在催化剂孔道中的停留时间,显著提高催化剂的COS水解率。LSH-02G催化剂工业应用结果表明:装置在80%、100%和110%负荷下运行,各项参数运行正常,急冷水pH稳定在7.8~8.0,急冷塔顶在线氢气含量(φ)维持在1.8%~2.2%,加氢反应器无SO2穿透。加氢反应器中SO2加氢转化率均为100%,COS水解率均在92%以上,符合普光天然气净化厂加氢催化剂技术规格书要求(SO2加氢转化率100%,COS水解率达90%以上)。  相似文献   
94.
张宾 《化工环保》2016,36(4):406-409
采用絮状污泥成功启动升流式厌氧污泥床(UASB)反应器处理含甲酸、苯胺、环已酮、NO3-等的工业废水。UASB反应器以低负荷启动,10天后逐渐提高进水COD,出水COD保持在710~770 mg/L,COD去除率为40%~60%;出水TOC保持在115~314 mg/L,TOC去除率由60.3%逐渐升高至87.2%,最终维持在81%左右;出水中ρ(NO3-)维持在134~176 mg/L,NO3-去除率为90%左右,系统稳定后NO3-去除率几乎为100%。在进水COD容积负荷不超过5.00 kg/(m3·d)的条件下,实际COD容积负荷稳定在2.00 kg/(m3·d)左右,实际TOC容积负荷稳定在1.00 kg/(m3·d)以上。当进水COD容积负荷不大于4.48 kg/(m3·d)时,COD去除率为55%~74%,TOC去除率为63%~87%,NO3-去除率大于95%。  相似文献   
95.
Effects of acid deposition on forests in south China   总被引:1,自引:0,他引:1  
1IntroductionWiththefastgrowingofmodernindustryandsharplyincreasingofenergyconsumptionprimarilycoal,airpolutionandaciddeposit...  相似文献   
96.
生活垃圾填埋过程含水率变化研究   总被引:2,自引:1,他引:2  
为分析垃圾在好氧和厌氧条件下降解过程中含水率变化的规律,采用时域反射测量(time domain reflectometry,TDR)技术监测了垃圾填埋过程中含水率的变化情况.结果表明,填埋过程中垃圾体积含水率随时间逐渐增大,垃圾持水性能不断提高.好氧初期垃圾内水量变化与含水率变化正相关,好氧后期则为负相关;厌氧填埋过程中,垃圾沉降压缩是含水率变化的主要原因.垃圾TDR读数与基于物质衡算的垃圾体积含水率计算值之间有较好的相关性,好氧填埋过程两者最大偏差约为±5%,厌氧填埋过程两者最大偏差约为±2%,TDR技术适用于实际填埋工程的含水率测量.  相似文献   
97.
程建中  李心清  唐源  周志红  王兵  程红光  邢英 《生态环境》2010,19(11):2551-2557
为了解不同土地利用方式对土壤剖面CO2体积分数的影响,采用气相色谱法对贵州喀斯特地区土壤不同深度空气CO2体积分数进行观测。结果表明:不同土地利用对土壤平均CO2体积分数影响较大,其次序为:次生林(0.35%±0.06%)〉草地(0.34%±0.05%)〉人工林(0.27%±0.03%)〉农田(0.16%±0.03%)。次生林、草地与农田之间土壤CO2体积分数差异性显著,而人工林与农田之间无显著性差异。不同土地利用方式土壤剖面CO2体积分数的时空变化特征比较一致:从春季到夏季逐渐增加而从秋季到冬季又逐渐降低,与该区域的温度和降雨量变化趋势一致。同时随着土壤剖面深度增加CO2体积分数逐渐增大,但在土层12 cm处有突然降低现象(农田除外)。不同土地利用方式土壤空气CO2体积分数变化与大气、土壤温度密切相关(r=0.602~0.886,P〈0.05),土壤温度升高会导致土壤CO2体积分数上升。土壤湿度虽然也在一定程度上影响了剖面CO2体积分数,但相关性分析表明二者之间并不显著(r=0.105~0.393,P〉0.05),说明在贵州喀斯特地区,土壤温度对土壤空气CO2体积分数的影响大于土壤湿度。  相似文献   
98.
建立DPX快速吸附萃取、程序升温(PTV)大体积进样与气相色谱/质谱(GC/MS)联用,SIM模式同时测定水中19种多溴联苯(PBBs)单体的方法。该方法在PBBs质量浓度1~50μg/L范围内线性良好,19种PBBs单体检出限为0.147~0.230μg/L,相对标准偏差为6.61%~10.5%,加标回收率为61.5%~82.6%。  相似文献   
99.
Bias originating from intrinsic nonlinearity in nonlinear models is caused by excess curvature in the solution locus of parameter estimates derived from least squares procedures. Bias due to intrinsic nonlinearity varies according to sample size as well as model specification. This paper analyses consequences of fractionising data into smaller sub-samples. Based on measurements of stem diameter and total tree height from the first Danish national forest inventory, it is demonstrated how data splitting at random may cause the intrinsic nonlinear curvature to exceed the critical F-value. Application of a Taylor-series expansion shows that, for all practical purposes, the bias in predictions of individual tree volume (based on stem diameter and tree height) is negligible. To minimize residual variance, intrinsic curvature and, in turn, prediction bias, it is recommended that data be stratified according to site conditions, stand characteristics or other relevant criteria. Finally, the preferred model should exhibit close-to-linear behaviour.  相似文献   
100.
The Reynolds transport theorem (RTT) from mathematics and engineering has a rich history of success in mass transport dynamics and traditional thermodynamics. This paper introduces RTT as a complementary approach to traditional compartmental methods used in ecological modeling and network analysis. A universal system equation for a generic flow quantity is developed into a generic open-system differential expression for conservation of energy. Nonadiabatic systems are defined and incorporated into control volume (CV) and control surface (CS) perspectives of RTT where reductive assumptions in empirical data are then formally introduced, reviewed, and appropriately implemented. Compartment models are abstract, time-dependent systems of simultaneous differential equations describing storage and flow of conservative quantities between interconnected entities (the compartments). As such, they represent a set of flexible and somewhat informal, assumptions, definitions, algebraic manipulations, and graphical depictions subject to influence and selectively parsed expression by the modeler. In comparison, RTT compartment models are more rigorous and formal integro-differential equations and graphics initiated by the RTT universal system equation, forcing an ordered identification of simplifying assumptions, ending with clearly identified depictions of the transfer and transport of conservative substances in physical space and time. They are less abstract in the rigor of their equation development leaving less ambiguity to modeler discretion. They achieve greater consistency with other RTT compartment style models while possibly generating greater conformity with physical reality. Characteristics of the RTT approach are compared with those of a traditional compartment model of energy flow in an intertidal oyster-reef community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号