Various designs of typical digital control panels were analyzed experimentally from both the effectiveness and efficiency points of view. Subjects performed information comparison tasks aimed at keeping vehicle velocity at the same level. The experiment involved two versions of speedometers for displaying current and target velocities (clock-face and digital). The stimuli were also differentiated by the target velocity value (20, 50 and 80?km/h) and the correct response type (increase or decrease). Subjects’ performance results along with the eye-tracking data were qualitatively and quantitatively analyzed for all 24 experimental conditions. 相似文献
Objective: Soldiers in military vehicles subjected to underbelly blasts can sustain traumatic head and neck injuries due to a head impact with the roof. The severity of head and neck trauma can be influenced by the amount of head clearance available to the occupant as well as factors such as wearing a military helmet or the presence of padding on the interior roof. The aim of the current study was to examine the interaction between a Hybrid III headform, the helmet system, and the interior roof of the vehicle under vertical loading.
Methods: Using a head impact machine and a Hybrid III headform, tests were conducted on a rigid steel plate in a number of different configurations and velocities to assess helmet shell and padding performance, to evaluate different vehicle roof padding materials, and to determine the relative injury mitigating contributions of both the helmet and the roof padding. The resultant translational head acceleration was measured and the head injury criterion (HIC) was calculated for each impact.
Results: For impacts with a helmeted headform hitting the steel plate only, which represented a common scenario in an underbelly blast event, velocities of ≤6 m/s resulted in HIC values below the FMVSS 201U threshold of 1,000, and a velocity of 7 m/s resulted in HIC values well over the threshold. Roof padding was found to reduce the peak translational head acceleration and the HIC, with rigid IMPAXX foams performing better than semirigid ethylene vinyl acetate (EVA) foam. However, the head injury potential was reduced considerably more by wearing a helmet than by the addition of roof padding.
Conclusions: The results of this study provide initial quantitative findings that provide a better understanding of helmet–roof interactions in vertical impacts and the contributions of the military helmet and roof padding to mitigating head injury potential. Findings from this study will be used to inform further testing with the future aim of developing a new minimum head clearance standard for occupants of light armored vehicles. 相似文献
ABSTRACT: Whomever would affect water policy development must influence the water legislative process. This paper discusses in the context of the Model State Water Allocation Code the following ten ideas about doing that: (1) seek the right timing for enactment; (2) set modest goals; (3) prepare a well-drafted proposal; (4) recognize diversity by offering legislative choices; (5) consider the impacts of adoption; (6) make alliances; (7) respect executive influence; (8) become involved in legislative interaction; (9) be flexible; and (10) persist. Heeding these ideas, although not guaranteeing enactment, is sure to be educational for participants and useful to legislators. 相似文献
ABSTRACT: This study considers the design and analysis of nonpumped well systems to provide pressure relief in the Cochrane aquifer, which is hydraulically connected to the Waterton Reservoir, Analyses of the relief well management problem are performed with a management model formulated by the combined simulation-optimization approach. The model determines active relief well sites and their optimal discharge schedules. The existing relief wells are inadequate to provide the desirable pressure relief. The locations and design capacities of two new relief well systems are determined by the management model. The relationships between reservoir level and well discharge are estimated for these two well systems. 相似文献
ABSTRACT: A drain function and set of type curves were defined for the mathematical solution that represents one-dimensional flow under nonsteady conditions in a leaky aquifer for the constant drawdown boundary condition. A match point procedure was developed for determining the aquifer parameters transmissivity, storage coefficient, and leakance based on the drain function and type curves. Use of the procedure is illustrated by an example that utilizes simulated aquifer drawdowns and flowrate data. The drain function and type curves developed in this investigation include the effects of leakage for the constant drawdown boundary condition, which is not included in the existing drain function and type curve found in the literature. Thus, a new set of type curves was developed that can be used to analyze drawdowns for one-dimensional flow in a leaky aquifer with constant drawdown at a line sink. Applications would include flow to a canal or river, drainage of agricultural lands, and dewatering associated with strip mining operations. 相似文献
Assessing groundwater resources in the arid and semiarid borderlands of the United States and Mexico represents a challenge for land and water managers, particularly in the Transboundary Santa Cruz Aquifer (TSCA). Population growth, residential construction, and industrial activities have increased groundwater demand in the TSCA, in addition to wastewater treatment and sanitation demands. These activities, coupled with climate variability, influence the hydrology of the TSCA and emphasize the need for groundwater assessment tools for decision‐making purposes. This study assesses the impacts of changes in groundwater demand, effluent discharge, and climate uncertainties within the TSCA from downstream of the Nogales International Wastewater Treatment Plant to the northern boundary of the Santa Cruz Active Management Area. We use a conceptual water budget model to analyze the long‐term impact of the different components of potential recharge and water losses within the aquifer. Modeling results project a future that ranges from severe long‐term drying to positive wetting. This research improves the understanding of the impact of natural and anthropogenic variables on water sustainability, with an accessible methodology that can be globally applied. 相似文献