首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   133篇
  国内免费   133篇
安全科学   202篇
废物处理   30篇
环保管理   744篇
综合类   282篇
基础理论   266篇
污染及防治   133篇
评价与监测   80篇
社会与环境   36篇
灾害及防治   27篇
  2023年   22篇
  2022年   24篇
  2021年   40篇
  2020年   47篇
  2019年   45篇
  2018年   28篇
  2017年   50篇
  2016年   60篇
  2015年   67篇
  2014年   65篇
  2013年   76篇
  2012年   60篇
  2011年   94篇
  2010年   53篇
  2009年   119篇
  2008年   76篇
  2007年   73篇
  2006年   59篇
  2005年   75篇
  2004年   55篇
  2003年   67篇
  2002年   59篇
  2001年   48篇
  2000年   59篇
  1999年   51篇
  1998年   42篇
  1997年   25篇
  1996年   37篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1800条查询结果,搜索用时 0 毫秒
971.
ABSTRACT: Under Colorado's appropriative water right system, withdrawals by junior ground water rights must be curtailed to protect senior surface water appropriators sharing the same river system unless the ground water users replace the amount of their injury to the river under an approved plan for augmentation. Compensation of such injury with surface water may not only be expensive but unreliable in dry years. As an alternative, the curtailment of pumping may be obviated by recharging unused surface water into the aquifer when available and withdrawing it when needed. In order to manage such an operation, a practical tool is required to accurately determine that portion of the recharge water that does not return to the river before pumping for irrigation. A digital model was used for this purpose in a demonstration recharge project located in the South Platte River basin in northeastern Colorado. This paper summarizes the experiences gained from this project, the results of the digital model, the economic value of recharge, and the feasibility of the operation. It was determined through the use of the digital model that, with the given conditions in the area, 77 percent of the recharged water remained available for pumping. Economic analyses showed that water could be recharged inexpensively averaging about two dollars per acre foot.  相似文献   
972.
ABSTRACT: In developing water quality models for lakes and reservoirs, the assumptions of one-dimensionality (i.e., water quality changes are significant only in one dimension – usually depth), as well as two-dimensionality (considering the length and depth of the water body), have been utilized to predict water quality. In both caws, the assumption of lateral homogeneity is made. A field study was undertaken to determine the change of water quality in the lateral dimension. The main study reservoir was Center Hill Lake in Middle Tennessee. Data were also obtained for Cherokee Lake in East Tennessee. Several water quality parameters (temperature, dissolved oxygen, pH, conductivity, and oxidation reduction potential) were analyzed over the length, breadth, and depth of these reservoirs from pre-stratification through post-stratification. The statistical and theoretical three-dimensional analysis showed the expected variation for each water quality parameter in each direction. The influence of the lateral dimension on water quality management and modeling was found to be negligible.  相似文献   
973.
Predicting the multiple pathways of plant succession   总被引:4,自引:0,他引:4  
Classical concepts view succession as a deterministic, mechanistic regeneration of the disturbed community, and thus have limited applicability to fire-prone ecosystems, A recently developed multiple pathway succession model appears to have more realism and applicability in frequently disturbed ecosystems. It includes a set of species-specific attributes that are vital to reproduction and survival, and permits variable succession pathways depending on the stand's age (and thus species composition) when disturbed. Examples from Australia and the northern Rocky Mountains (USA) are presented, as are approaches to refining and improving the model.  相似文献   
974.
ABSTRACT: To assure attainment and maintenance of desired water quality levels in our rivers and streams, systematic monitoring must be performed. A preliminary phase of the design of water quality surveillance systems is the specification of sampling frequencies and station locations throughout the basin; that is, the development of an adequate space/time sampling plan. The purpose of this paper is to present some quantitative methods which have been developed to identify candidate sets of sampling frequencies and station locations, and to establish priorities for implementing the different frequencies and locations. These methods are useful in the cost/effectiveness trade-off analyses in surveillance system design, and are based on the surveillance system objective of pollution abatement in which it is desired to detect violations in state-federal water quality standards. A spatial priority measure is developed which is dependent both on the water quality profile in the stream and on the information obtained from monitoring stations located in other reaches. Also, a temporal sampling priority rating is presented which is a measure of the effectiveness of the surveillance system with respect to its ability to detect the violations in the standards. To illustrate the quantitative methods, the procedures are applied to the Wabash River Basin.  相似文献   
975.
As a first step to work out an abatement plan against air pollution, a local emission inventory with 1 hr temporal and 1 km spatial resolution in the city of Izmir and its surroundings was prepared. The study area consisted of a 200 × 170 km2 rectangle having the city of Izmir at the centre. The studied pollutants were total particulate matter (PM), sulfur oxides (SOx), nitrogen oxides (NOx), volatile organic compounds (VOC) and carbon monoxide (CO). Emissions of these pollutants were determined by estimation methods making use of suitable emission factors. Emission sources were evaluated in three categories; point, area and line sources. For year 2000 total emissions in the study area on an average day were estimated as 173 tons PM, 299 tons SOx, 136 tons NOx, 68 tons VOC and 320 tons CO. At the second part of the study, calculated emissions were transformed into air quality predictions in the area by using the Industrial Source Complex – Short Term (ISCST3) dispersion model. Model results were tested with monitoring data from urban air quality stations obtained during the year 2000. Results of the past, present and future air quality estimates in the region were discussed. In order to do so, future scenarios including various control technology applications were formulated and tested to see their effect on the future air quality.  相似文献   
976.
ABSTRACT: About 50 to 80 percent of precipitation in the southeastern United States returns to the atmosphere by evapotranspiration. As evapotranspiration is a major component in the forest water balances, accurately quantifying it is critical to predicting the effects of forest management and global change on water, sediment, and nutrient yield from forested watersheds. However, direct measurement of forest evapotranspiration on a large basin or a regional scale is not possible. The objectives of this study were to develop an empirical model to estimate long‐term annual actual evapotranspiration (ART) for forested watersheds and to quantify spatial AET patterns across the southeast. A geographic information system (GIS) database including land cover, daily streamflow, and climate was developed using long term experimental and monitoring data from 39 forested watersheds across the region. Using the stepwise selection method implemented in a statistical modeling package, a long term annual AET model was constructed. The final multivariate linear model includes four independent variables—annual precipitation, watershed latitude, watershed elevation, and percentage of forest coverage. The model has an adjusted R2 of 0.794 and is sufficient to predict long term annual ART for forested watersheds across the southeastern United States. The model developed by this study may be used to examine the spatial variability of water availability, estimate annual water loss from mesoscale watersheds, and project potential water yield change due to forest cover change.  相似文献   
977.
ABSTRACT: Reservoir operation involves a complex set of human decisions depending upon hydrologic conditions in the supply network including watersheds, lakes, transfer tunnels, and rivers. Water releases from reservoirs are adjusted in an attempt to provide a balanced response to different demands. When a system involves more than one reservoir, computational burdens have been a major obstacle in incorporating uncertainties and variations in supply and demand. A new generation of stochastic dynamic programming was developed in the 1980s and 1990s to incorporate the forecast and demand uncertainties. The Bayesian Stochastic Dynamic Programming (BSDP) model and its extension, Demand Driven Stochastic Dynamic Programming (DDSP) model, are among those models. Recently, a Fuzzy Stochastic Dynamic Programming model (FSDP) also was developed for a single reservoir to model the errors associated with discretizing the variables using fuzzy set theory. In this study the DDSP and the FSDP models were extended and simplified for a complex system of Dez and Karoon reservoirs in the southwestern part of Iran. The simplified models are called Condensed Demand Driven Stochastic Programming (CDDSP) and Condensed Fuzzy Stochastic Dynamic Programming (CFSDP). The optimal operating policies developed by the CDDSP and the CFSDP models were simulated in a classical model and a fuzzy simulation model, respectively. The case study was used to demonstrate the advantages of implementing the proposed algorithm, and the results show the significant value of the proposed fuzzy based algorithm.  相似文献   
978.
ABSTRACT: Urbanization, farming, and other watershed activities can significantly alter storm hydrographs and sediment erosion rates within a watershed. These changes routinely cause severe economic and ecological problems manifested in the form of increased flooding and significant changes in channel morphology. As the activities within a watershed influence the hydrologic, hydraulic, and ecological conditions within a river, interdisciplinary approaches to predict and assess the impacts that different land uses have on streams need to be developed. An important component of this process is ascertaining how hydrologic changes induced by specific watershed activities will affect hydraulic conditions and the accompanying flood levels, sediment transport rates, and habitat conditions within a stream. A conceptual model for using spatially explicit (two‐dimensional) hydraulic models to help evaluate the impacts that changes in flow regime might have on a river is presented. This framework proposes that reproducing and quantifying flow complexity allows one to compare the hydraulic conditions within urban, urbanizing, and non‐urban streams in a more biologically and economically meaningful way. The justification, advantage, and need for such a method is argued through the results of one‐ and two‐dimensional hydraulic model studies. The implementation of this methodology in watershed urbanization studies is described.  相似文献   
979.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   
980.
ABSTRACT: Infiltration processes at the plot scale are often described and modeled using a single effective hydraulic conductivity (Kg) value. This can lead to errors in runoff and erosion prediction. An integrated field measurement and modeling study was conducted to evaluate: (1) the relationship among rainfall intensity, spatially variable soil and vegetation characteristics, and infiltration processes; and (2) how this relationship could be modeled using Green and Ampt and a spatially distributed hydrologic model. Experiments were conducted using a newly developed variable intensity rainfall simulator on 2 m by 6 m plots in a rangeland watershed in southeastern Arizona. Rainfall application rates varied between 50 and 200 mm/hr. Results of the rainfall simulator experiments showed that the observed hydrologic response changed with changes in rainfall intensity and that the response varied with antecedent moisture condition. A distributed process based hydrologic simulation model was used to model the plots at different levels of hydrologic complexity. The measurement and simulation model results show that the rainfall runoff relationship cannot be accurately described or modeled using a single Kg value at the plot scale. Multi‐plane model configurations with infiltration parameters based on soil and plot characteristics resulted in a significant improvement over single‐plane configurations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号