首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1532篇
  免费   131篇
  国内免费   128篇
安全科学   202篇
废物处理   30篇
环保管理   744篇
综合类   278篇
基础理论   266篇
污染及防治   128篇
评价与监测   80篇
社会与环境   36篇
灾害及防治   27篇
  2023年   21篇
  2022年   22篇
  2021年   39篇
  2020年   47篇
  2019年   45篇
  2018年   26篇
  2017年   50篇
  2016年   59篇
  2015年   67篇
  2014年   65篇
  2013年   76篇
  2012年   59篇
  2011年   94篇
  2010年   53篇
  2009年   119篇
  2008年   76篇
  2007年   73篇
  2006年   59篇
  2005年   75篇
  2004年   55篇
  2003年   67篇
  2002年   59篇
  2001年   48篇
  2000年   59篇
  1999年   51篇
  1998年   42篇
  1997年   25篇
  1996年   37篇
  1995年   24篇
  1994年   19篇
  1993年   17篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   11篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   5篇
  1983年   5篇
  1982年   10篇
  1981年   9篇
  1980年   13篇
  1979年   15篇
  1978年   11篇
  1977年   4篇
  1975年   2篇
  1974年   2篇
  1970年   2篇
排序方式: 共有1791条查询结果,搜索用时 15 毫秒
991.
基于BP模型的南通市农田土壤重金属空间分布研究   总被引:3,自引:0,他引:3  
利用采样点实测数据,借助BP神经网络模型并结合GIS技术对江苏省南通市农田土壤重金属的空间动态分布进行了详细地描述.结果表明,BP神经网络模型能够智能地学习各个采样点的空间位置与该点各重金属含量之间的映射关系,并能够稳健地对各个空问插值点处的土壤重金属含量进行预测.运用Arcgis进行的分析结果显示,在该地区Pb和As造成的污染最严重,其他重金属污染相对较轻.其中南通市区、海门市和启东市重金属富集最严重;南通大部、通州、如东大部分地区含量较少,含量最少的地区是如皋市和海安县.在运用神经网络模型进行空间插值了解重金属空间动态分布的基础上,可以根据污染的分布状况确定农产品的生产布局和规划.  相似文献   
992.
针对现今公共活动中的人群踩踏事故频发问题,应用计算机仿真技术研究紧急情况下建筑物中人群逃生规律及设施优化方法。设置人员体质、移动余值、出口逃生条件等因素,扩展元胞自动机(CA)行人流模型。利用Matlab语言实现可视化模拟。对莱阳市某体育馆进行人流疏散模拟,分析得到其安全设施的最佳设定参数,实现优化目的。结果表明:该体育馆仿真疏散完成总时间为103.5 s,可引发踩踏事故的疏散危险期长达49.0 s,疏散危险期长度为判断踩踏事故发生可能性的重要指标;出口宽度、数量均与疏散时间呈负相关,且均存在疏散能力饱和点。据此提出将宽度改建为2.5 m、数量增加到6个的优化方案,此方案疏散危险期为9.0 s,疏散总时间缩短到33.5 s。  相似文献   
993.
Water resource management is becoming increasingly challenging in northern China because of the rapid increase in water demand and decline in water supply due to climate change. We provide a case study demonstrating the importance of integrated watershed management in sustaining water resources in Chifeng City, northern China. We examine the consequences of various climate change scenarios and adaptive management options on water supply by integrating the Soil and Water Assessment Tool and Water Evaluation and Planning models. We show how integrated modeling is useful in projecting the likely effects of management options using limited information. Our study indicates that constructing more reservoirs can alleviate the current water shortage and groundwater depletion problems. However, this option is not necessarily the most effective measure to solve water supply problems; instead, improving irrigation efficiency and changing cropping structure may be more effective. Furthermore, measures to increase water supply have limited effects on water availability under a continuous drought and a dry‐and‐warm climate scenario. We conclude that the combined measure of reducing water demand and increasing supply is the most effective and practical solution for the water shortage problems in the study area.  相似文献   
994.
Water resources in the Yangtze River Estuary (YRE), which is the vital water supply for Shanghai, decreased by approximately 2.45 Gm3 in 2006, the second‐worst recorded drought year. A numerical model was developed to investigate the effects of this extreme drought on pollutant transport processes in the YRE. The model was calibrated against observations and displayed good agreement. Residence time, a critical hydrodynamic indicator, was implemented to indicate pollutant transport processes. Numerical experiments were conducted to examine the possibly drought‐induced influences. The model results demonstrated that the influences on pollutant transport processes varied spatially and temporally, and these influences could partly explain the observed temporal and spatial variations of total nitrate in 2006. The area most susceptible to drought is in the north branch with 2‐11 days' extension of residence time. As the drought occurred in both the high and normal water periods, its influences were more significant during the normal water period with saltwater intrusion into the north branch. The drought also introduced a pollutant transport lag in timescale of approximately five days by diminishing the seaward advection flux with freshwater discharge. In 2006, the magnified tidal influence during the drought contributed more than usual to structuring pollutant transport, as the pollutant transport processes were intensely associated with tidal flow and tidal cycle.  相似文献   
995.
The availability of freshwater is a prerequisite for municipal development and agricultural production, especially in the arid and semiarid portions of the western United States (U.S.). Agriculture is the leading user of water in the U.S. Agricultural water use can be partitioned into green (derived from rainfall) and blue water (irrigation). Blue water can be further subdivided by source. In this research, we develop a hydrologic balance by 8‐Digit Hydrologic Unit Code using a combination of Soil and Water Assessment Tool simulations and available human water use estimates. These data are used to partition agricultural groundwater usage by sustainability and surface water usage by local source or importation. These predictions coupled with reported agricultural yield data are used to predict the virtual water contained in each ton of corn, wheat, sorghum, and soybeans produced and its source. We estimate that these four crops consume 480 km3 of green water annually and 23 km3 of blue water, 12 km3 of which is from groundwater withdrawal. Regional trends in blue water use from groundwater depletion highlight heavy usage in the High Plains, and small pockets throughout the western U.S. This information is presented to inform water resources debate by estimating the cost of agricultural production in terms of water regionally. This research illustrates the variable water content of the crops we consume and export, and the source of that water.  相似文献   
996.
Bankfull hydraulic geometry relationships are used to estimate channel dimensions for streamflow simulation models, which require channel geometry data as input parameters. Often, one nationwide curve is used across the entire United States (U.S.) (e.g., in Soil and Water Assessment Tool), even though studies have shown that the use of regional curves can improve the reliability of predictions considerably. In this study, regional regression equations predicting bankfull width, depth, and cross‐sectional area as a function of drainage area are developed for the Physiographic Divisions and Provinces of the U.S. and compared to a nationwide equation. Results show that the regional curves at division level are more reliable than the nationwide curve. Reliability of the curves depends largely on the number of observations per region and how well the sample represents the population. Regional regression equations at province level yield even better results than the division‐level models, but because of small sample sizes, the development of meaningful regression models is not possible in some provinces. Results also show that drainage area is a less reliable predictor of bankfull channel dimensions than bankfull discharge. It is likely that the regional curves can be improved using multiple regression models to incorporate additional explanatory variables.  相似文献   
997.
This study evaluates the ability of the Catchment SIMulation (CSIM) hydrologic model to describe seasonal and regional variations in river discharge over the entire Baltic Sea drainage basin (BSDB) based on 31 years of monthly simulation from 1970 through 2000. To date, the model has been successfully applied to simulate annual fluxes of water from the catchments draining into the Baltic Sea. Here, we consider spatiotemporal bias in the distribution of monthly modeling errors across the BSDB since it could potentially reduce the fidelity of predictions and negatively affect the design and implementation of land‐management strategies. Within the period considered, the CSIM model accurately reproduced the annual flows across the BSDB; however, it tended to underpredict the proportion of discharge during high‐flow periods (i.e., spring months) and overpredict during the summer low flow periods. While the general overpredictions during summer periods are spread across all the subbasins of the BSDB, the underprediction during spring periods is seen largely in the northern regions. By implementing a genetic algorithm calibration procedure and/or seasonal parameterization of subsurface water flows for a subset of the catchments modeled, we demonstrate that it is possible to improve the model performance albeit at the cost of increased parameterization and potential loss of parsimony.  相似文献   
998.
The prediction of the consequences of a runaway reaction in terms of temperature and pressure evolution in a reactor requires the knowledge of the reaction kinetics, thermodynamics and fluid dynamics inside the vessel during venting. Such phenomena and their interaction are complex and yet to be fully understood, especially reactions where the pressure generation is totally or partially due to the production of permanent gases (gassy or hybrid systems). Moreover, these phenomena cannot be easily determined by laboratory scale experiments. In this paper, a dynamic model developed to simulate the behavior of an untempered reacting mixture during venting is presented. The model provides the temperature, pressure and mass inventory profiles before and during venting. A sensitivity study of the model was performed. This modeling work provides some insight regarding the interpretation of the data obtained from untempered system venting experiments. The outcome of this work contribute to improving the design of emergency relief systems for hybrid and gassy systems, where significant progress is still to be made in the experimental and modeling areas.  相似文献   
999.
Chemicals used in paint industry are generally comprised of toxic and inflammable substances; they may cause serious problems for humans and environment if safety conditions are neglected. In 2012, rupture of a toluene tank in a paint factory in Iran claimed lives of two workers near the tank. The present study is formulated in order to model the incident. The results showed the area prone to flash fire occurrence and extension. Furthermore, radiation was measured in terms of distance to the tank. A bund wall is also assumed around the vessel in order to determine its influence on evaporation in flash fire area, radiation, and maximum concentration of vapor cloud. The results provided important hints on minimum and required distance of electrical equipment or electrical enclosure (PLC) installation from vessels as well as suitable distance between the vessels. Finally, preventive recommendations were proposed to reduce the risk of potential accidents.  相似文献   
1000.
大型海啸灾害等自然灾害的发生产生了大量重伤员,所以研究大型海啸灾害后重伤员的批量护理风险建模极为重要。通过大型海啸灾害救治流程预案启动和重伤员批量护理实施方法两部分研究大型海啸灾害后重伤员批量护理方法,并提出通过前馈控制性管理防范护理风险。提升护理风险管理的科学性以及全面性。通过护理风险防范预案提升重伤员护理质量将大型海啸灾害后批量重伤员护理风险降至最低。通过护理风险防范预案提升重伤员护理质量等降低重伤员批量护理风险的措施,使得大型海啸灾害后的急救工作可快捷有序完成,赢得重伤员抢救的黄金时间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号