首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7742篇
  免费   716篇
  国内免费   1633篇
安全科学   1438篇
废物处理   109篇
环保管理   1117篇
综合类   4379篇
基础理论   1020篇
污染及防治   505篇
评价与监测   609篇
社会与环境   327篇
灾害及防治   587篇
  2024年   52篇
  2023年   182篇
  2022年   265篇
  2021年   299篇
  2020年   308篇
  2019年   271篇
  2018年   259篇
  2017年   325篇
  2016年   402篇
  2015年   429篇
  2014年   454篇
  2013年   565篇
  2012年   625篇
  2011年   706篇
  2010年   492篇
  2009年   506篇
  2008年   385篇
  2007年   549篇
  2006年   491篇
  2005年   375篇
  2004年   303篇
  2003年   302篇
  2002年   227篇
  2001年   214篇
  2000年   194篇
  1999年   154篇
  1998年   124篇
  1997年   118篇
  1996年   90篇
  1995年   101篇
  1994年   60篇
  1993年   62篇
  1992年   36篇
  1991年   26篇
  1990年   23篇
  1989年   12篇
  1988年   13篇
  1987年   13篇
  1986年   12篇
  1985年   7篇
  1984年   10篇
  1983年   5篇
  1982年   9篇
  1981年   12篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
为探究城市污泥产品的林地施用效果,以北京排水集团生产的城市污泥产品(有机营养土、生物碳土、复合生物碳土)为研究对象,在北京市大兴区建立了城市污泥产品林地施用示范区.通过现场施用,研究3种城市污泥产品在不同施肥方式、不同施肥量下对林地环境及毛白杨生长的影响.结果表明,土壤的酸碱度与施肥前相比有小幅度的上升,最终稳定在7....  相似文献   
22.
设计了一种新型双室空气阴极微生物燃料电池(MFC)并将其作为生物传感器,与传统双室空气阴极MFC进行对比,考察其电化学性能及用于快速检测BOD的性能。结果表明:新型空气阴极MFC可有效提高功率密度并降低内阻,其功率密度最高为897 mW·m−2,而内阻最低为92 Ω;该MFC可用于直接快速检测高浓度有机物的BOD,对醋酸钠底物的线性检测限为1 280 mg·L−1,在此底物浓度下MFC的检测时间为31.2~66 h,线性可决系数R2为0.97~0.99;对于GGA底物的线性检测限为1 250 mg·L−1,在此底物浓度下MFC的检测时间为33~67 h,线性可决系数R2为0.98。本研究可为MFC型BOD检测传感器的性能优化提供参考。  相似文献   
23.
为研究危化品重大危险源基于社会风险基准的规划管控影响,采用我国标准规定的定量风险评价方法,TNT当量炸药简化方法,针对最大TNT当量炸药、事故发生总累计频率、人口密度分布控制参数等不同工况条件,对比分析国土开发强度的允许人口密度受社会风险约束影响的变化规律。研究结果表明:人口密度指数分布控制参数Nk与Nb的允许取值随最大TNT当量炸药和事故发生总累计频率降低而提高;确定工况下,允许总人口规模受最大TNT当量炸药影响很小;在最大TNT当量炸药大于100 t或事故发生总累计频率小于1×10-8次/a时可按最大事故场景进行规划控制分析。  相似文献   
24.
At present, the prediction of failure probability is based on the operation period for laid pipelines, and the method is complicated and time-consuming. If the failure probability can be predicted in the planning stage, the risk assessment system of gas pipeline will be greatly improved. In this paper, the pre-laying assessment model is established to minimize risk of leakage due to piping layout. Firstly, Fault Tree Analysis (FTA) modeling is carried out for urban natural gas pipeline network. According to expert evaluation, 84 failure factors, which can be determined in the planning stage, are selected as the input variables of the training network. Then the FTA model is used to calculate the theoretical failure probability value, and the failure probability prediction model is determined through repeated trial calculation based on BP (Back Propagation Neural Network) and RBF (Radial Basis Function), for obtaining the optimal network parameter combination. Finally, two prediction models are used to calculate the same example. By comparing our pre-assessment model with the theoretical prediction consequences of the fault tree, the results show that the error of RBF prediction model can be close to 3%, which proves the validity and correctness of the method.  相似文献   
25.
Loss of the underground gas storage process can have significant effects, and risk analysis is critical for maintaining the integrity of the underground gas storage process and reducing potential accidents. This paper focuses on the dynamic risk assessment method for the underground gas storage process. First, the underground gas storage process data is combined to create a database, and the fault tree of the underground gas storage facility is built by identifying the risk factors of the underground gas storage facility and mapping them into a Bayesian network. To eliminate the subjectivity in the process of determining the failure probability level of basic events, fuzzy numbers are introduced to determine the prior probability of the Bayesian network. Then, causal and diagnostic reasoning is performed on the Bayesian network to determine the failure level of the underground gas storage facilities. Based on the rate of change of prior and posterior probabilities, sensitivity and impact analysis are combined to determine the significant risk factors and possible failure paths. In addition, the time factor is introduced to build a dynamic Bayesian network to perform dynamic assessment and analysis of underground gas storage facilities. Finally, the dynamic risk assessment method is applied to underground gas storage facilities in depleted oil and gas reservoirs. A dynamic risk evaluation model for underground gas storage facilities is built to simulate and validate the dynamic risk evaluation method based on the Bayesian network. The results show that the proposed method has practical value for improving underground gas storage process safety.  相似文献   
26.
An integrated approach for performance assessment and management of safety barriers in a systemic manner is needed concerning the prevention and mitigation of major accidents in chemical process industries. Particularly, the effects of safety barriers on system risk reduction should be assessed in a dynamic manner to support the decision-making on safety barrier establishments and improvements. A simulation approach, named Simulink-based Safety Barrier Modeling (SSBM), is proposed in this paper to conduct dynamic risk assessment of chemical facilities with the consideration of the degradation of safety barriers. The main functional features of the SSBM include i) the basic model structures of SSBM can be determined based on bow-tie diagrams, ii) multiple data (periodic proof test data, continuous condition-monitoring data, and accident precursor data) may be combined to update barrier failure probabilities and initiating event probabilities, iii) SSBM is able to handle uncertainty propagation in probabilistic risk assessment by using Monte Carlo simulations, and iv) cost-effectiveness analysis (CEA) and optimization algorithms are integrated to support the decision-making on safety barrier establishments and improvements. An illustrative case study is demonstrated to show the procedures of applying the SSBM on dynamic risk-informed safety barrier management and validate the feasibility of implementing the SSBM for cost-effective safety barrier optimization.  相似文献   
27.
Accidents in university laboratories not only create a great threat to students’ safety but bring significant negative social impact. This paper investigates the university laboratory safety in China using questionnaire and Bayesian network (BN) analysis. Sixteen influencing factors for building the Bayesian net were firstly identified. A questionnaire was distributed to graduate students at 60 universities in China to acquire the probability of safe/unsafe conditions for sixteen influencing factors, based on which the conditional probability of four key factors (human, equipment and material, environment, and management) was calculated using the fuzzy triangular theory and expert judgment. The determined conditional probability was used to develop a Bayesian network model for the risk analysis of university laboratory safety and identification of the main reasons behind the accidents. Questionnaire results showed that management problems are prominent due to insufficient safety education training and weak management level of management personnel. The calculated unsafe state probability was found to be 65.2%. In the BN analysis, the human factor was found to play the most important role, followed by equipment and material factor. Sensitive and inferential analysis showed that the most sensitive factors are personnel incorrect operation, illegal operation, and experiment equipment failure. Based on the analysis, countermeasures were proposed to improve the safe management and operation of university laboratories.  相似文献   
28.
When a natural disaster occurs, it may damage multiple industrial facilities in a certain area at the same time, and the resulting Natech events may have an impact on the surrounding industrial facilities, generating coupling risk. In this study, the assessment of Natech events coupling risk is conducted using the method of correlated multi-criteria decision-making, and the knowledge of fuzzy measures is introduced to solve the uncertainty problem in Natech coupling risk. Natech Coupling Risk Index is constructed to involve physical and functional facilities. The concept of equivalent population is proposed to compare the risks generated by physical facilities and functional facilities. And economic indicators are added to calculate the comprehensive risk value. The purpose of this contribution is to enable local government managers to use their expertise and resources and the existing risk assessment of the plants themselves and rely on the scoring of experts limitedly to quickly and easily identify potential high Natech risk areas. In the calculation process of coupling risk, the government can also take the lead to promote information communication between different plants and other industrial subjects. The proposed method was applied in a realistic chemical industry area in Guangzhou, China and in a hypothetical town. The result shows that the physical risk may be transferred to the population and economy through the coupling between industrial facilities and the functional link between functional facilities and population and economy.  相似文献   
29.
Leakage and explosion of hazardous chemicals during road transportation can cause serious building damage and casualties, and adoption of highly-efficient emergency rescue measures plays a critical role in reducing accidental hazards. Considering a liquefied petroleum gas (LPG) transport tanker explosion accident that occurred in Wenling, Zhejiang Province, China on June 13, 2020 as example, this study proposes a risk assessment framework. This framework recreates the leakage and explosion of the accident process using FLACS v10.9, suggests plans for evacuation, describes the rescue areas of different levels, and explores the influence of environmental factors on the evacuation and rescue areas. The results show that simulated and predicted distributions of fuel vapour cloud concentration and explosion overpressure can provide a reference basis for rapid rescue activities; the characterization of the dynamic effects of wind speed, wind direction, and temperature with respect to the evacuation and rescue areas can be used as theoretical support for on-site adjustment of rescue forces. The role of obstacles can prevent the expansion of the evacuation areas under low wind-speed conditions, and the presence of highly congested obstacles determines the level of the rescue area. The results obtained are important for the risk analysis and the development of emergency rescue measures in case of explosion accidents associated with transportation of hazardous chemicals on high-hazard and high-sensitive road sections.  相似文献   
30.
In order to address the risk of combustible gas explosions in sewage culverts, a numerical model was established using ANSYS/LS-DYNA software. The model consisted of a culvert and a cover plate, and was used to study the effect of cover plate thickness (ranging from 0.08 m to 0.12 m) on the dynamic response and damage of the structure under explosive loads. The results indicated that, during the loading negative pressure stage, the equivalent stress peak value of the central monitoring unit of the cover plate first increased and then decreased with increasing cover plate thickness. Additionally, the maximum principal stress peak value first decreased and then increased, while the maximum shear stress peak value first increased and then decreased. During the loading positive pressure stage, the maximum principal strain peak value of the monitoring unit decreased overall with increasing cover plate thickness. However, the equivalent plastic strain peak value initially increased and then decreased gradually. The equivalent strain indicated that plastic damage occurred in the cover plate. Beyond a thickness of 0.11 m, increasing the cover thickness did not appear to enhance its resistance to plastic damage. The damage analysis revealed that as cover plate thickness increased, the peak displacement and velocity of the monitoring unit continued to decrease, while the overall stability and explosive resistance of the cover plate increased. Additionally, the number of damaged fragments decreased. However, once the cover plate thickness reached 0.11 m, the bonding performance of the reinforced concrete structure had been fully developed, increasing the thickness of the cover plate no longer had a significant impact on the explosive resistance of the cover plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号