首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   32篇
  国内免费   37篇
安全科学   16篇
废物处理   13篇
环保管理   18篇
综合类   83篇
基础理论   94篇
污染及防治   32篇
评价与监测   18篇
社会与环境   4篇
灾害及防治   41篇
  2024年   3篇
  2023年   7篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   9篇
  2018年   8篇
  2017年   4篇
  2016年   13篇
  2015年   4篇
  2014年   10篇
  2013年   27篇
  2012年   20篇
  2011年   8篇
  2010年   7篇
  2009年   24篇
  2008年   8篇
  2007年   11篇
  2006年   21篇
  2005年   19篇
  2004年   15篇
  2003年   8篇
  2002年   18篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   5篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
231.
为了提高高炉干法除尘布袋的寿命,在重力除尘器和布袋除尘器之间加入旋风除尘装置,得到的旋风灰可以作为煤粉添加剂。对首秦高炉旋风灰进行粒度和化学成分分析,研究发现高炉旋风灰可以降低煤粉着火温度,提高燃烧效率,且其粒度分布与喷吹煤粉相似,可以作为高炉喷吹煤粉添加剂。通过实验室测定煤粉添加不同比例旋风灰后的燃烧率,确定在富氧率为3%,旋风灰添加比例为6%的条件下,可达到最佳的煤粉燃烧效果。旋风灰作为高炉自产的喷煤添加剂,与煤粉混合喷吹可以为企业减轻固废处理负担,同时带来可观的经济效益和社会效益。  相似文献   
232.
Despite sincere efforts by concerned agencies and recent improvements in hazard warnings, thousands of at-risk people did not evacuate during Aila, a category-I tropical cyclone that struck southwestern coastal Bangladesh in 2009. This study investigated the responses of the people affected by Aila to cyclone warnings and associated evacuation orders, and unveiled behavioural aspects that explain why they did or did not comply with the evacuation orders. Utilising the primary data collected from 420 households living in the severely affected coastal sub-district Koyra, located in Khulna District, this study found that although more than 97% of the households had received cyclone warnings and evacuation orders before Aila's landfall, only around 26% had evacuated. We also examined this study's empirical findings for factors that had dissuaded people from complying with the evacuation orders. Relevant test statistics along with results from principal component analysis suggested that the significant and systematic absenteeism of households from disaster preparedness training appears to be one of the key determinants that affected their evacuation decisions, along with factors related to warning messages, the attributes of cyclone shelters, risk perception, and socioeconomic aspects. A number of recommendations are also presented in this study for people at risk to improve their evacuation rates in future emergencies, not only to save their own lives but also to save their livestock.  相似文献   
233.
Understanding the circumstances and conditions surrounding disaster‐attributed deaths may contribute to designing and implementing emergency preparedness and response programmes. This paper introduces a three‐step cluster analysis of multiple binary variables to investigate mortality patterns related to tropical cyclones. It is designed to overcome the difficulties of performing cluster analysis in a disaster database that is composed in part of nominal variables and is unavoidably incomplete owing to missing information. The first step in the process codes all variables as binary data in order to accommodate the nominal variables. The second step calculates Spearman's rank correlation coefficients for pairs of variables. And the third step subjects the correlation coefficients to cluster analysis. Data related to 1,575 deaths attributed to tropical cyclones (also known as typhoons) that struck Taiwan between 2000 and 2015 are used to illustrate the method. The results yield two distinct groups of variables that are worthy of further exploration.  相似文献   
234.
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800‐ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species‐richness estimates were significantly higher (F= 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30–50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30–50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30–50%). Highly sensitive species were 3‐4 times more common above the 30–50% threshold than below it; however, our results do not support a unique fragmentation threshold. Asociaciones de la Cobertura Forestal, Superficie del Fragmento y Conectividad con la Riqueza y Abundancia de Aves Neotropicales de Sotobosque  相似文献   
235.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   
236.
A soil–plant–air continuum multilayer model was used to numerically simulate canopy net assimilation (An), evapotranspiration (ET), and soil moisture in a deciduous teak plantation in a dry tropical climate of northern Thailand to examine the influence of soil drought on An. The timings of leaf flush and the end of the canopy duration period (CDP) were also investigated from the perspective of the temporal positive carbon gain. Two numerical experiments with different seasonal patterns of leaf area index (LAI) were carried out using above-canopy hydrometeorological data as input data. The first experiment involved seasonally varying LAI estimated based on time-series of radiative transmittance through the canopy, and the second experiment applied an annually constant LAI. The first simulation captured the measured seasonal changes in soil surface moisture; the simulated transpiration agreed with seasonal changes in heat pulse velocity, corresponding to the water use of individual trees, and the simulated An became slightly negative. However, in the second simulation, An became negative in the dry season because the decline in stomatal conductance due to severe soil drought limited the assimilation, and the simultaneous increase in leaf temperature increased dark respiration. Thus, these experiments revealed that the leaflessness in the dry season is reasonable for carbon gain and emphasized the unfavorable soil water status for carbon gain in the dry season. Examining the duration of positive An (DPA) in the second simulation showed that the start of the longest DPA (LDPA) in a year approached the timing of leaf flush in the teak plantation after the spring equinox. On the other hand, the end appeared earlier than that of all CDPs. This result is consistent with the sap flow stopping earlier than the complete leaf fall, implying that the carbon assimilation period ends before the completion of defoliation. The model sensitivity analysis in the second simulation suggests that a smaller LAI and slower maximum rate of carboxylation likely extend the LDPA because soil water from the surface to rooting depth is maintained longer at levels adequate for carbon gain by decreased canopy transpiration. The experiments also suggest that lower soil hydraulic conductivity and deeper rooting depth can postpone the end of the LDPA by increasing soil water retention and the soil water capacity, respectively.  相似文献   
237.
Abstract:  We evaluated the importance of small (<5 ha) forest patches for the conservation of regional plant diversity in the tropical rainforest of Los Tuxtlas, Mexico. We analyzed the density of plant species (number of species per 0.1 ha) in 45 forest patches of different sizes (1–700 ha) in 3 landscapes with different deforestation levels (4, 11, and 24% forest cover). Most of the 364 species sampled (360 species, 99%) were native to the region, and only 4 (1%) were human-introduced species. Species density in the smallest patches was high and variable; the highest (84 species) and lowest (23 species) number of species were recorded in patches of up to 1.8 ha. Despite the small size of these patches, they contained diverse communities of native plants, including endangered and economically important species. The relationship between species density and area was significantly different among the landscapes, with a significant positive slope only in the landscape with the highest deforestation level. This indicates that species density in a patch of a given size may vary among landscapes that have different deforestation levels. Therefore, the conservation value of a patch depends on the total forest cover remaining in the landscape. Our findings revealed, however, that a great portion of regional plant diversity was located in very small forest patches (<5 ha), most of the species were restricted to only a few patches (41% of the species sampled were distributed in only 1–2 patches, and almost 70% were distributed in 5 patches) and each landscape conserved a unique plant assemblage. The conservation and restoration of small patches is therefore necessary to effectively preserve the plant diversity of this strongly deforested and unique Neotropical region.  相似文献   
238.
红沿河核电厂区位于我国北方海域的辽东湾东海岸,经常受到北上热带气旋的侵袭和影响。观测和统计表明,在辽宁登陆的热带气旋,强度能够达到台风,不容忽略。影响红沿河的热带气旋基本出现在7、8月份,以进入渤海后向西北移动和穿越山东半岛向北在辽东半岛登陆的两类热带气旋对红沿河区域影响最大,建国56年来最强的热带气旋在红沿河附近区域造成的最大风速达到25~33m/s,极大风速达40m/s以上。使用概率论方法和梯度风公式估算红沿河核电厂区可能最大热带气旋的强度参数,得到:百年一遇的可能最低气压估值为961 hPa,最大风速为35.4m/s,极大风速为46.0m/s;千年一遇的可能最低气压估值为939 hPa,最大风速为42.2m/s,极大风速为54.9m/s。  相似文献   
239.
Effects of Coffee Management on Deforestation Rates and Forest Integrity   总被引:1,自引:0,他引:1  
Knowledge about how forest margins are utilized can be crucial for a general understanding of changes in forest cover, forest structure, and biodiversity across landscapes. We studied forest‐agriculture transitions in southwestern Ethiopia and hypothesized that the presence of coffee (Coffea arabica)decreases deforestation rates because of coffee's importance to local economies and its widespread occurrence in forests and forest margins. Using satellite images and elevation data, we compared changes in forest cover over 37 years (1973–2010) across elevations in 2 forest‐agriculture mosaic landscapes (1100 km2 around Bonga and 3000 km2 in Goma‐Gera). In the field in the Bonga area, we determined coffee cover and forest structure in 40 forest margins that differed in time since deforestation. Both the absolute and relative deforestation rates were lower at coffee‐growing elevations compared with at higher elevations (?10/20% vs. ?40/50% comparing relative rates at 1800 m asl and 2300–2500 m asl, respectively). Within the coffee‐growing elevation, the proportion of sites with high coffee cover (>20%) was significantly higher in stable margins (42% of sites that had been in the same location for the entire period) than in recently changed margins (0% of sites where expansion of annual crops had changed the margin). Disturbance level and forest structure did not differ between sites with 30% or 3% coffee. However, a growing body of literature on gradients of coffee management in Ethiopia reports coffee's negative effects on abundances of forest‐specialist species. Even if the presence of coffee slows down the conversion of forest to annual‐crop agriculture, there is a risk that an intensification of coffee management will still threaten forest biodiversity, including the genetic diversity of wild coffee. Conservation policy for Ethiopian forests thus needs to develop strategies that acknowledge that forests without coffee production may have higher deforestation risks than forests with coffee production and that forests with coffee production often have lower biodiversity value. Efectos de la Administración Cafetalera sobre las Tasas de Deforestación y la Integridad de los Bosques  相似文献   
240.
SUMMARY

Forests are fundamental and vital components of the world ecosystems. The essential links between forest and man are now receiving renewed and urgent attention, and there is increasing awareness that the value of forests to life on Earth is beyond economic value, and should be above political considerations. Tropical forests, generally marked out by richness in species, are found in more than 80 countries and account for roughly one-third of the world's forest cover. They encompass a wide variety of forest types found under diverse environmental conditions — from lush, constantly wet rain forests to arid thorn woodlands. These forests have been estimated to cover about 1715 million hectares in Africa alone. They have provided habitats for wildlife and wood, fibre, food and many other products to generations of mankind and are invaluable genetic resources of plants. Rapid population growth has, however, resulted in increasing the pressure on these forests, with a consequent decline in their qualitative and quantitative values. Throughout the world, forest lands have been cleared extensively for agriculture, and deforestation continues today. In the tropics, 10–25 million ha are being lost each year, with Africa alone losing 4–5 million ha annually. It has been estimated that, at this rate, the remaining tropical forest would disappear in 60–80 years; thereby leading to catastrophic environmental changes. The serious impact of these changes on the environment and on human needs is awakening world attention, and alarming consequences have sometimes been suggested. This paper highlights the major causes of tropical deforestation and its environmental consequences. Possible efforts to arrest the unpleasant trend are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号