首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   82篇
  国内免费   10篇
安全科学   6篇
废物处理   1篇
环保管理   199篇
综合类   206篇
基础理论   97篇
污染及防治   8篇
评价与监测   15篇
社会与环境   235篇
灾害及防治   6篇
  2025年   5篇
  2024年   16篇
  2023年   14篇
  2022年   17篇
  2021年   27篇
  2020年   22篇
  2019年   21篇
  2018年   17篇
  2017年   45篇
  2016年   47篇
  2015年   37篇
  2014年   33篇
  2013年   39篇
  2012年   38篇
  2011年   41篇
  2010年   36篇
  2009年   29篇
  2008年   27篇
  2007年   42篇
  2006年   39篇
  2005年   34篇
  2004年   29篇
  2003年   23篇
  2002年   22篇
  2001年   11篇
  2000年   15篇
  1999年   12篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   2篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有773条查询结果,搜索用时 15 毫秒
1.
    
ABSTRACT: A review of methods for planning-level estimates of pollutant loads in urban stormwater focuses on transfer of charac. teristic runoff quality data to unmonitored sites, runoff monitoring, and simulation models. Load estimation by transfer of runoff quality data is the least expensive, but the accuracy of estimates is unknown. Runoff monitoring methods provide best estimates of existing loads, but cannot be used to predict load changes resulting from runoff controls, or other changes of the urban system. Simulation models require extensive calibration for reliable application. Models with optional formulations of pollutant build up, washoff, and transport can be better calibrated and the selection of options should be based on a statistical analysis of calibration data. Calibrated simulation models can be used for evaluation of control alternatives.  相似文献   
2.
    
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
3.
    
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   
4.
    
ABSTRACT: Few studies have been conducted to explore the effects of initial abstraction on estimated direct runoff despite the widespread use of the curve number (CN) method in many hydrologic models to estimate direct runoff. In this study, use of a 5 percent ratio of initial abstraction (Ia) to storage (S) to estimate daily direct runoff with modified CN values for a 5 percent Ia/S value was investigated using the Long‐Term Hydrologic Impact Assessment (L‐THIA) geographic information system (GIS). In addition, the effects on estimated runoff of altering the hydrologic soil group due to urbanization were investigated. The L‐THIA model was applied to the Indiana Little Eagle Creek watershed with 5 percent and 20 percent Ia/S values, considering hydrologic soil group alteration due to urbanization. The results indicate that uses of a 5 percent la/S and modified CN values and Hydrologic Soil Group D for urbanized areas in model runs can improve long term direct runoff prediction.  相似文献   
5.
ABSTRACT: Data were developed within a three-year period for indicator bacteria and three species of bacterial pathogens following rural storm event hydrographs. The first flush concept was confirmed in all hydrographs. Bacterial density peaking occurred at or before the hydrograph peaks. FC and FS values were higher in more developed areas than the primary rural test site and their numerical ratios followed similar trends. Chlorine demand of storm waters varied between 8 and 16 mg/l and, the ozone requirement was greater than 32 mg/l in the same waters. Aftergrowth of total coliform bacteria occurred following chlorine and ozone doses of 16 mg/l and 32 mg/l respectively. Fecal coliform, fecal streptococci, Salmonella sp., and Pseudomonas sp. all were reduced to near detectable limits by the disinfectants up to 8 days. Staphylococcus sp. demonstrated a propensity to restablish their populations. Multiple regression analysis of the bacterial groups and species in storm waters suggested the fecal streptococci to have been the most useful group in evaluating bacterial storm water quality, with staphylocci have been closely related insofar as their statistical significance was concerned.  相似文献   
6.
ABSTRACT: Hydrograph analysis of six streams on the south shore of Long Island indicates that eastward urbanization during the last three decades has significantly reduced base flow to streams. Before urbanization, roughly 95 percent of total annual stream flow on Long Island was base flow. In urbanized southwestern Nassau County, storm water sewerage, increased impervious surface area, and sanitary sewerage have reduced base flow to 20 percent of total stream flow. In an adjacent urbanized but unsewered area in southeastern Nassau County, base flow has decreased to 84 percent of total annual stream flow. In contrast, base flow in two streams in rural areas has remained virtually constant, averaging roughly 95 percent of total annual flow throughout the 1955-70 study period. Double-mass curve analysis of base flow as a percentage of total annual stream flow indicates that (1) changes in stream flow characteristics began in the early 1960's in the sewered area and in the late 1960's in the later urbanized, unsewered area, and (2) a new equilibrium has been established between the streams in the sewered area and the new hydrologic characteristics of their urbanized drainage basins.  相似文献   
7.
    
ABSTRACT: Long term effects of precipitation and land use/land cover on basin outflow and nonpoint source (NFS) pollutant flux are presented for up to 24 years for a rapidly developing headwater basin and three adjacent headwater basins on the urban fringe of Washington, D.C. Regression models are developed to describe the annual and seasonal responses of basin outflow and IMPS pollutant flux to precipitation, mean impervious surface (IS), and land use. To quantify annual change in mean IS, a variable called delta IS is created as a temporal indicator of urban soil disturbance. Hydrologic models indicate that total annual surface outflow is significantly associated with precipitation and mean IS (r2= 0.65). Seasonal hydrologic models reveal that basin outflow is positively associated with IS during the summer and fall growing season (June to November). NPS pollutant flux models indicate that total and storm total suspended solids (TSS) flux are significantly associated with precipitation and urban soil disturbance in all seasons. Annual NPS total nitrogen flux is significantly associated with both urban and agricultural soil disturbance (r2= 0.51). Seasonal models of phosphorus flux indicate a significant association of total phosphorus flux with urban soil disturbance during the growing season. Total soluble phosphorus (TSP) flux is significantly associated with IS (r2= 0.34) and urban and agricultural soil disturbance (r2= 0.58). In urbanizing Cub Run basin, annual TSP concentrations are significantly associated with IS and cultivated agriculture (r2= 0.51).  相似文献   
8.
    
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   
9.
进入新时代,具有“邻避”效应的重大项目和基础设施建设仍然是我国城镇化发展的“刚需”和重要支撑,环境“邻避”问题必将是当前及今后一定时期内城镇化进程中面临的常态。本文选取南方某省作为典型对象进行深入研究,结果表明,环境“邻避”问题总体风险形势平稳可控,防控重点领域仍以传统领域为主,公众诉求反应和抗争表达方式由激烈转变为相对理性,城市规划与建设的矛盾风险问题增多,风险传播快传导性强。本文系统总结出明确组织领导统筹机制、强化联动发挥协作效能、建设项目高标准实施、惠民措施灵活有效、社会力量聚合治理等地方实践经验。建议重点着力防范化解好传统领域风险,常态化推动机制发挥作用,充分发挥共建共治共享作用,以环境社会治理共享发展成果,提升环境“邻避”问题系统应对能力。  相似文献   
10.
以武汉市2000-2013年的城市化水平和空气质量状况数据为基础,运用主成分分析法和目标比率模型构建综合评价体系,并用多元回归模型进行检验,探究城市化过程中的空气环境质量响应特征.结果表明:1)2000年以来,武汉城市化进入稳增长的快速抬升阶段,空气污染综合指数总体变化平稳,2013年有变坏的趋势;2)不同类型的污染物对城市化水平具有不同的响应规律和影响程度,SO2为倒“U”型,表明随着城市发展,SO2浓度得到控制并呈下降趋势;NO2为“U”型,近9年来NO2浓度不减反增,对空气环境污染严重;而PM10及空气质量综合水平表现为倒“N”型特征,表明现阶段空间环境呈现污染加重的趋势;3)城市化快速扩张过程中的基础设施建设、建筑扬尘,汽车尾气排放、工业烟尘等是影响武汉空间环境质量的主要因素,需有针对性地加强城市空气环境管理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号