首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   4篇
  国内免费   1篇
综合类   7篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2015年11月7-9日沈阳出现罕见的持续严重污染天气,采用环流形势、地面常规气象观测、污染物浓度观测、风廓线雷达及雨滴谱资料等,对此次污染成因进行了研究.结果表明:在此次严重污染天气过程中,连续22 h AQI≥500,首要污染物均为PM2.5,其异常峰值最高达到1308μg/m3;ρ(PM2.5)与ρ(PM10)、ρ(NO2)和ρ(CO)的相关系数分别达到0.996、0.602、0.891,并且ρ(PM2.5)与ρ(PM10)、ρ(CO)的正相关性更为显著;在污染的同时出现了降水,11月7和8日的日降水量分别为9.9和2.3 mm,但降水对污染物的稀释和清除作用并不明显.稳定的大尺度环流和对流层内中低层大气层结持续稳定、连续4个时次的探空曲线显示925~850 hPa之间存在多个逆温层(逆温强度最大可达5℃)、相对湿度较大(日均相对湿度在75%以上),是此次严重污染天气持续的有利气象条件.风廓线雷达探测的整层大气垂直速度很小,多介于-1~1 m/s之间,并且近地面2 m/s以下弱下沉的垂直速度为严重污染天气过程提供了较好的动力条件.此外,近地面风力可达3~4级,有利于上游污染物的水平输送.研究显示,此次严重污染天气过程还与外围秸秆集中燃烧所导致的大量污染物长距离输送有密切关联.   相似文献   
2.
北京夏季典型臭氧污染分布特征及影响因子   总被引:19,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   
3.
利用中国环境监测总站发布的实时大气环境监测资料,选择京津冀地区8个城市(北京市、天津市、石家庄市、保定市、唐山市、邢台市、邯郸市和秦皇岛市)57个站点为研究对象,对2015年该地区AQI(环境空气质量指数)及其首要污染物日报和实时报特征进行综合分析与评估.结果表明:①京津冀地区8个城市空气质量等级日报的首要污染物主要是PM2.5,其中邯郸市以PM2.5为首要污染物日数占比(即出现日数占全年总天数的比例)最高,为90%;北京市最小,为50%;其余城市在70%左右.以O3为首要污染物日数占比较高的是北京市和保定市,超过20%;秦皇岛市最小,为2.8%.以NO2为首要污染物日数占比较高的是秦皇岛市,为10.6%.②京津冀地区8个城市AQI实时报中以O3为首要污染物的情况最多不超过10%,几乎没有以NO2为首要污染物的情况;但在AQI日报中,以O3为首要污染物的日数占比最高的可达26%,以NO2为首要污染物的日数占比高达11%.③以2015年北京市奥体中心站点为例,当AQI日报仅以NO2为首要污染物时(23 d),空气质量等级日报均为良的情况主要发生在1-3月和10-12月;然而同期AQI实时报白天(08:00-16:00)空气质量等级均呈现优、良,而夜晚(16:00以后)ρ(PM2.5)为中度和重度污染等级;当AQI日报仅以O3为首要污染物时(55 d),空气质量等级日报均为良的情况主要发生在4月和7-8月;同期,尽管AQI实时报中ρ(PM2.5)日变化差异不明显,但ρ(PM2.5)达到中度和重度污染等级的时段明显增多,且峰值多出现在10:00左右.④导致AQI日报和实时报结果差异的主要原因是在计算实时AQI时颗粒物质量浓度标准仅参考ρ(PM2.5)和ρ(PM10)24 h限值,这将会导致不确定性及滞后性.研究显示,在全国已有5 a长时间监测数据的基础上,有必要对AQI等内容开展深入研究,以加强对标准及其相关指南和规定的修改与完善工作.   相似文献   
4.
2013年9月10日国务院颁布了《大气污染防治行动计划》(下称《行动计划》).为研究《行动计划》颁布前后我国不同地区大气污染状况变化及其防治措施效果,通过分析2013—2014年“中国大气气溶胶研究网络(CARE-China)” 36个监测站点ρ(PM2.5),结合同期环境保护部公布的74个重点城市大气主要污染物浓度数据和OMI卫星数据,分析了我国不同地区ρ(PM2.5)变化及其原因;同时,以北京为例,分析了不同粒径段中颗粒物质量浓度变化的原因.结果表明:①京津冀及其周边、长三角、珠三角、西南、成渝、西北、华中、关中和东北9个地区ρ(PM2.5)年均值下降了1.1~16.3 μg/m3.其中,京津冀及其周边、长三角、珠三角、成渝和关中地区降幅均超过10.0%,分别为10.2%、10.7%、11.6%、16.9%和20.8%.②不同地区ρ(NO2)和ρ(SO2)年均值变化基本一致,近地面ρ(NO2)年均值在京津冀及其周边、珠三角、西南、成渝和华中等地区降幅在3.0%~9.2%之间,但是华北平原地区NO2柱浓度下降明显,降幅在10.0%~20.0%之间.③北京地区ρ(PM1)和ρ(PM2.5)年均值分别下降了5.7和0.2 μg/m3,并且ρ(NO3-)和ρ(SO42-)年均值在PM1和PM2.5中均有所下降,但ρ(PM1~2.5)与其ρ(NH4+)年均值升幅分别为27.9%和16.2%.因此,京津冀及其周边地区在防治措施实施过程中,在控制高架点源与实施脱硝措施等情况下,应逐步加强近地面面源和线源的控制力度;在实施SO2和NOx减排措施的同时,还需要重视机动车三元催化过程和燃煤电厂脱硫脱硝过程中可能导致的NH3排放问题.   相似文献   
5.
利用MCCM(多尺度气象空气质量模式)对京津冀地区2008年6月严重光化学污染时段的近地面φ(NOx)和φ(O3)进行了模拟;同时,为了检验MCCM系统模拟φ(O3)时空分布的能力,将模拟的气象要素、φ(NOx)和φ(O3)与观测数据进行了比对,并利用验证后的模拟结果对该地区严重光化学污染时段O3时空分布特征进行研究. 结果表明:①MCCM模式可较好地反映气象场和污染物浓度场的时空分布特征. 气温、露点温度和气压的观测值与模拟值的相关系数分别为0.85、0.77和0.95;模拟的化学物种浓度的时空分布与观测结果基本相符. ②城市中心地区φ(NOx)较高,北京和天津城市地区的φ(NOx)甚至超过了30×10-9;京津冀平原大部分地区午后14:00φ(O3)的最大值超过了70×10-9;而太行山沿线φ(O3)的最大值超过了80×10-9. 结合气象要素的分析表明,午后φ(O3)在太行山沿线的高值与气压场和流场关系密切. ③利用判断O3生成敏感性指标——H2O2/HNO3(体积分数比)分析发现,φ(O3)日最大值和φ(总氧化剂)(总氧化剂=NO2+O3)平均值的高值区域与O3生成受NOx和VOCs协同控制的区域极为吻合. 因此,要达到降低区域的光化学污染,应以VOCs的消减为主,同时兼顾NOx的消减.   相似文献   
6.
天津重污染期间大气污染物浓度垂直分布特征   总被引:14,自引:7,他引:7  
利用天津气象局255 m铁塔垂直4层观测平台(高度分别为3、40、120和220 m),对各层大气中的NOx、O3、SO2浓度(均以φ计)和PM2.5浓度(以ρ计)进行了连续观测,结合同步气象要素分析了2010年10月3—11日天津发生的一次重污染事件.结果表明:在此次重污染事件期间,一次及二次污染物浓度的垂直梯度变化差异显著,φ(NO)、φ(NO2)和ρ(PM2.5)随高度上升而降低,φ(NO)在3~120和120~220 m的递减率分别为58.0%和8.5%,ρ(PM2.5)在3~220 m递减率为13.0%;而φ(O3)和φ(SO2)平均值却随高度的上升而增加,其中φ(O3)在3~40、40~120和120~220 m的增长率分别为108.0%、19.1%和56.4%,φ(SO2)在3~220 m的增长率为25.0%. NOx主要来源于局地近地面污染源的排放;SO2主要来源于高架点源的排放,O3则来源于局地光化学过程积累;PM2.5受局地排放源和光化学过程的双重影响,垂直梯度变化最不显著. 不利于扩散的气象条件使以局地排放为主的污染物积累升高及其伴随的光化学反应造成了天津此次重污染事件.   相似文献   
7.
中美空气质量指数(AQI)对比研究及启示   总被引:8,自引:1,他引:7  
对中美两国空气质量指数(AQI),特别是颗粒物分指数进行了对比研究,并利用2013年4月至12月期间,中国环境监测总站发布的环境空气质量监测数据,开展了典型大气污染过程的分析.结果表明,中国环境空气质量标准的研究、制订和发布起步虽晚但发展很快,所包含的污染物指标更全面,能够客观地反映出中国空气污染的特征,也更贴近居民对空气质量的切身感受;中美计算颗粒物小时AQI采用的方法不同,对比发现中国采用颗粒物24 h平均浓度限值代替1 h平均浓度限值的计算方法会将污染等级倾向于严重化;中国在计算颗粒物AQI时设定的颗粒物浓度限值存在一定的问题,导致AQI200时,PM2.5/PM10的比值出现与实际不符的现象;对奥体中心监测点数据分析显示,AQI50时,PM2.5/PM10比值小于0.5,且PM2.5/PM10的比值随着污染指数等级的增大而增大.建议尽早修订和调整颗粒物实时报的浓度限值和计算方法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号