首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   4篇
  国内免费   70篇
安全科学   3篇
废物处理   8篇
环保管理   28篇
综合类   124篇
基础理论   32篇
污染及防治   141篇
评价与监测   28篇
社会与环境   3篇
  2023年   13篇
  2022年   11篇
  2021年   11篇
  2020年   19篇
  2019年   10篇
  2018年   12篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   6篇
  2011年   20篇
  2010年   29篇
  2009年   41篇
  2008年   34篇
  2007年   25篇
  2006年   11篇
  2005年   13篇
  2004年   7篇
  2003年   11篇
  2002年   5篇
  2001年   13篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有367条查询结果,搜索用时 15 毫秒
1.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
2.
Ozone (O3), as a harmful air pollutant, has been of wide concern. Safe, efficient, and economical O3 removal methods urgently need to be developed. Catalytic decomposition is the most promising method for O3 removal, especially at room temperature or even subzero temperatures. Great efforts have been made to develop high-efficiency catalysts for O3 decomposition that can operate at low temperatures, high space velocity and high humidity. First, this review describes the general reaction mechanism of O3 decomposition on noble metal and transition metal oxide catalysts. Then, progress on the O3 decomposition performance of various catalysts in the past 30 years is summarized in detail. The main focus is the O3 decomposition performance of manganese oxides, which are divided into supported manganese oxides and non-supported manganese oxides. Methods to improve the activity, stability, and humidity resistance of manganese oxide catalysts for O3 decomposition are also summarized. The deactivation mechanisms of manganese oxides under dry and humid conditions are discussed. The O3 decomposition performance of monolithic catalysts is also summarized from the perspective of industrial applications. Finally, the future development directions and prospects of O3 catalytic decomposition technology are put forward.  相似文献   
3.
Ground-level ozone (O3) has become a critical pollutant impeding air quality improvement in Yangtze River Delta region of China. In this study, we present O3 pollution characteristics based on one-year online measurements during 2016 at an urban site in Nanjing, Jiangsu Province. Then, the sensitivity of O3 to its precursors during 2 O3 pollution episodes in August was analyzed using a box model based on observation (OBM). The relative incremental reactivity (RIR) of hydrocarbons was larger than other precursors, suggesting that hydrocarbons played the dominant role in O3 formation. The RIR values for NOX ranged from –0.41%/% to 0.19%/%. The O3 sensitivity was also analyzed based on relationship of simulated O3 production rates with reductions of VOC and NOX derived from scenario analyses. Simulation results illustrate that O3 formation was between VOCs-limited and transition regime. Xylenes and light alkenes were found to be key species in O3 formation according to RIR values, and their sources were determined using the Positive Matrix Factorization (PMF) model. Paints and solvent use was the largest contributor to xylenes (54%), while petrochemical industry was the most important source to propene (82%). Discussions on VOCs and NOX reduction schemes suggest that the 5% O3 control goal can be achieved by reducing VOCs by 20%. To obtain 10% O3 control goal, VOCs need to be reduced by 30% with VOCs/NOX larger than 3:1.  相似文献   
4.
基于太原市2015年1月~2019年2月的空气质量监测数据,分析了太原市近地面臭氧浓度变化特征。结果表明:2015~2018年太原市臭氧年平均浓度为78.42、82.33、95.87、103.77μg/m 3,臭氧浓度存在加速上升趋势;臭氧浓度逐日变化范围为5~270μg/m 3,共有181 d超过GB 3095—2012《环境空气质量标准》二级标准限值(160μg/m 3),超标时段主要集中于5~8月份;臭氧浓度日变化呈单峰型分布,峰值与谷值时段分别为14∶00~16∶00和6∶00~7∶00;臭氧浓度有明显的月变化规律,峰值与谷值时段分别为6~7月和1月、12月;臭氧浓度还表现出显著的季节变化规律,按浓度高低依次排序为夏季、春季、秋季和冬季;臭氧浓度与NO 2、CO、PM 2.5浓度呈负相关性。  相似文献   
5.
Owing to the vast territory of China and strong regional characteristic of ozone pollution,it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China.Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function(REOF)analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3 years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations(O_3-8 hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6 ± 14.6 and 133.9 ± 25.8 μg/m~3,respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population.  相似文献   
6.
针对炼油厂废碱液存在的问题,研究一种新处理技术—溶剂萃取、破乳和臭氧氧化。为了解不同水质、pH值、温度的影响而进行试验研究,并获得了最佳操作参数。试验结果表明该技术在脱酚、除油、脱色脱臭方面是一种有效方法。  相似文献   
7.
O3是一种强氧化剂。利用臭氧处理带色有机废水。可以脱色,而且可以降低废水COD。采用O3氧化脱色速度快,效果好,对废水的脱色废可达80%以上,这是通常的混凝处理通信以达到的。如果采用通臭氧和混凝联合处理,处理效果会更好,脱色率可提高到95%以上。  相似文献   
8.
近年来,臭氧衰竭比原先预料的更严重,对人类健康和环境构成了严重威胁。“蒙特利尔议定书”和“大气清洁法案”要求2000年要完全清除致臭氧衰竭物质——氯氟烃(CFCs)的生产和使用。目前,世界各地积极开发CFCs的替代物,以加速转换。虽然已开发的氧氯氟烃(HCFCs)、氢氟烃(HFCs)等替代物与CFCs相比还有一定缺点,但最终一定会实现替代转换。  相似文献   
9.
In recent years, near surface ozone pollution, has attracted more and more attention, which necessitates the development of high efficient and low cost catalysts. In this work, CuO/Cu2O heterojunctioned catalyst is fabricated by heating Cu2O at high temperature, and is adopted as ozone decomposition catalyst. The results show that after Cu2O is heated at 180°C conversion of ozone increases from 75.2% to 89.3% at mass space velocity 1,920,000 cm3/(g·hr) in dry air with 1000 ppmV ozone, which indicates that this heterojunction catalyst is one of the most efficient catalysts reported at present. Catalysts are characterized by electron paramagnetic resonance spectroscopy and ultraviolet photoelectron spectroscopy, which confirmed that the heterojunction promotes the electron transfer in the catalytic process and creates more defects and oxygen vacancies in the CuO/Cu2O interfaces. This procedure of manufacturing heterostructures would also be applicable to other metal oxide catalysts, and it is expected to be more widely applied to the synthesis of high-efficiency heterostructured catalysts in the future.  相似文献   
10.
/ The risk tropospheric ozone poses to forests in the United States is dependent on the variation in ozone exposure across the distribution of the forests in question and the various environmental and climate factors predominant in the region. All these factors have a spatial nature, and consequently an approach to characterization of ozone risk is presented that places ozone exposure-response functions for species as seedlings and model-simulated tree and stand responses in a spatial context using a geographical information systems (GIS). The GIS is used to aggregate factors considered important in a risk characterization, including: (1) estimated ozone exposures over forested regions, (2) measures of ozone effects on species' and stand growth, and (3) spatially distributed environmental, genetic, and exposure influences on species' response to ozone. The GIS-based risk characterization provides an estimation of the extent and magnitude of the potential ozone impact on forests. A preliminary risk characterization demonstrating this approach considered only the eastern United States and only the limited empirical data quantifying the effect of ozone exposures on forest tree species as seedlings. The area-weighted response of the annual seedling biomass loss formed the basis for a sensitivity ranking: sensitive-aspen and black cherry (14%-33% biomass loss over 50% of their distribution); moderately sensitive-tulip popular, loblolly pine, eastern white pine, and sugar maple (5%-13% biomass loss); insensitive-Virginia pine and red maple (0%-1% loss). In the future, the GIS-based risk characterization will include process-based model simulations of the three- to 5-year growth response of individual species as large trees with relevant environmental interactions and model simulated response of mixed stands. The interactive nature of GIS provides a tool to explore consequences of the range of climate conditions across a species' distribution, forest management practices, changing ozone precursors, regulatory control strategies, and other factors influencing the spatial distribution of ozone over time as more information becomes available.KEY WORDS: Ecological risk assessment; GIS; Ozone; Risk characterization; Forests; Trees  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号