首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   774篇
  免费   584篇
  国内免费   68篇
安全科学   21篇
废物处理   7篇
环保管理   16篇
综合类   752篇
基础理论   294篇
污染及防治   211篇
评价与监测   116篇
社会与环境   9篇
  2025年   7篇
  2024年   17篇
  2023年   30篇
  2022年   34篇
  2021年   38篇
  2020年   47篇
  2019年   58篇
  2018年   52篇
  2017年   57篇
  2016年   61篇
  2015年   60篇
  2014年   49篇
  2013年   71篇
  2012年   91篇
  2011年   100篇
  2010年   82篇
  2009年   91篇
  2008年   87篇
  2007年   82篇
  2006年   77篇
  2005年   55篇
  2004年   41篇
  2003年   34篇
  2002年   18篇
  2001年   23篇
  2000年   14篇
  1999年   16篇
  1998年   5篇
  1997年   9篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有1426条查询结果,搜索用时 15 毫秒
1.
蔡北川  胡学锋  李昱洁  白亚星 《环境化学》2024,43(10):3459-3469
氯代多环芳烃(chlorinated polycyclic aromatic hydrocarbons,Cl-PAHs)是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的一种衍生物,广泛存在于各种环境介质中. 一些Cl-PAHs显示出与二噁英相似的毒性特性,甚至更高的毒性当量(TEQs). 了解Cl-PAHs的来源和形成机制对于控制其排放和降低人类暴露于这些有机污染物的风险有重要意义. 然而,目前关于Cl-PAHs的来源、形成机制和环境特征仍缺乏全面的了解. 该综述旨在总结Cl-PAHs在水环境中的污染现状与来源、毒性、光化学形成机理以及PAHs光致氯代影响因素,并对今后的PAHs光致氯代研究方向进行了展望,进而为该类化合物的环境污染及生态风险评估提供相应参考.  相似文献   
2.
潘苏红  张干  孙亚莉  解启来 《环境科学》2012,33(4):1204-1208
为探讨城市道路街尘中多环芳烃(PAHs)和黑碳(BC)的分布特征,2007年12月~2009年2月,分别在中国的北京、上海、广州和武汉以及印度的加尔各答采集了城市主干道的街尘.样品处理后分别用GC-MS和元素分析仪进行测定.结果表明,中国主要城市道路街尘中PAHs的含量范围为2.30~22.2μg.g-1,主要是以荧蒽、菲、芘、、苯并(b)荧蒽和苯并(ghi)苝为主要的多环芳烃化合物.印度加尔各答PAHs的含量范围为4.85~30.5μg.g-1,呈现出以2环的萘为主要的PAHs化合物.BC在中国主要城市道路街尘中的含量值高于印度的加尔各答,说明了2个国家可能的不同能源结构和能源消耗.相关分析表明,PAHs与BC在不同的城市显示出不同的特点,可能指示了不同的来源.特征比值法表明城市街尘中的PAHs主要来源于机动车排放,其次来源于燃煤.  相似文献   
3.
上海南汇潮滩表层中多环芳烃分布特征及环境意义   总被引:3,自引:0,他引:3  
利用GC/MS分析了上海南汇淤泥质潮滩6,8两月表层沉积物中有机污染物多环芳烃,结果表明,该区在6月和8月8潮滩中PAH组化芘,苯并芘及黄蒽具有较高的含量,并且在PAH总量中所占比重也产大,在潮滩沉积物中已呈明显富集的趋势。  相似文献   
4.
以南京市城郊不同土地利用类型的农业土壤(水田、菜地和林地)为研究对象,测定了16种PAHs的含量.结果表明,苊烯(Acy)在所有土壤样本中均未被检出,南京城郊农业土壤15种ω(PAHs)的范围在24.49~925.54μg·kg-1之间,平均值为259.88μg·kg-1.PAHs含量由高到低依次为:林地>水田>菜地,总体上以高环PAHs(HMW)含量为主.不同土壤理化性质对PAHs的影响表明:土壤有机碳(TOC)和黏粒(clay)含量与PAHs存在一定的相关性,pH和全氮(TN)与PAHs无明显相关性.毒性当量法和CSI指数法表明,南京城郊农业土壤中PAHs生态风险较小,但是林地中应当给予一定的重视.增量终身癌症风险(ILCR)进行健康风险评价表明,儿童健康的威胁风险略大于成人,林地的总的致癌风险(CR)明显高于菜地和水田,仍处于可接受的范围内.对成人进行了蒙特卡洛模拟表明,确定性健康风险的风险分析低估了PAHs的健康风险.敏感性分析结果表明,对CR总方差影响最大的输入参数是暴露频率EF(占50.7%).  相似文献   
5.
为了研究南京市区与郊区气溶胶中多环芳烃(PAHs)污染状况和分布特征,利用气-质联用仪(GC-MS)分析了2010年1月1~10日日间和夜间分别在南京大学和南京信息工程大学采集的气溶胶样品,得到南京市区与郊区17种PAHs浓度,总浓度分别为41.36~220.35 ng.m-3和45.10~200.86 ng.m-3,其中约66%~67%分布于细粒子(Dp≤2.1μm)中.研究发现,南京市区和郊区气溶胶中PAH总浓度均处于较高的水平;但两者昼夜变化趋势不同,即市区PAH总浓度日间高于夜间,郊区PAH总浓度日间低于夜间.主导风向的改变和高压天气系统对PAH浓度变化影响较大;在市区其影响主要表现在细粒子部分,而郊区主要表现在粗粒子部分.市区和郊区不同环数的PAHs粒径分布不同;2~3环PAHs,郊区含量高于市区;而4~6环PAHs,市区含量高于郊区.高环数(4~6环)PAHs在粗模态出现较大浓度峰可能是由于南京地区粗模态气溶胶中碳含量较高.市区和郊区相似的特征比值说明两者的PAHs具有相同污染来源,主要为生物质及煤的燃烧和汽车尾气,表明南京市区PAHs受到郊区工业源排放影响较大.  相似文献   
6.

以某废弃焦化厂的多环芳烃(PAHs)污染土壤为研究对象,通过耦合表活淋洗、生物降解、化学氧化等技术设计了4种修复工艺,并进行了试验验证。结果表明:针对该实际焦化污染土壤,单一的生物泥浆降解工艺21 d后PAHs可实现58.64%的降解率;采用表活增溶+化学氧化+生物泥浆的降解工艺,26 d降解率可达到65.68%,但前置的化学氧化会抑制生物降解效果;采用干筛分+表活分批淋洗+化学氧化的降解工艺降解率可达到85.36%,有效缩短降解时间到13 d内,但土壤中残留的PAHs与土壤颗粒结合紧密,化学氧化降解率仍难以满足大于90%的要求;采用湿筛分+表活分批淋洗+生物泥浆+化学氧化的生物强化协同降解工艺,29 d降解率可达到95.32%,实现了土壤的修复目标。生物强化协同降解工艺路线,综合了多种修复技术的优点,实现了修复技术组合优化,为焦化污染土壤中多环芳烃降解修复提供了可行的工艺路径。

  相似文献   
7.
为研究承德市PM2.5中多环芳烃(PAHs)的季度变化特征和污染来源,于2019年的1、 4、 7和10月采集PM2.5样品,采用气相色谱-质谱联用仪(GC-MS)测定了16种PAHs的浓度,并利用时序变动、特征比值和正定矩阵因子模型(PMF)的方法,分析了各季节PAHs的浓度变动、组分特征和潜在污染源.此外,为评价PAHs对健康风险的影响,采用BaP毒性当量法(BaPTeq)及增量终生致癌风险(ILCR)模型,并结合PAHs数据和PMF结果进行分析.结果表明,采样期间承德市PM2.5中■的变化范围为2.7~246.4 ng·m-3,呈现(136.8±52.1)ng·m-3(冬季)>(70.3±36.7)ng·m-3(秋季)>(24.7±17.4)ng·m-3(春季)>(13.7±9.4)ng·m-3(夏季)的显著季节特征.不同环数PAHs的浓度占总浓度的占比中,5~6环的...  相似文献   
8.
为准确评估多环芳烃(PAHs)污染土壤对人体的健康风险,解决目前基于总量风险评估导致土壤PAHs修复目标值过严的问题,采用德国标准研究院颁布的生物可给性测试方式研究了石家庄某焦化厂土壤中苯并荧蒽(BBF)、苯并荧蒽(BKF)、苯并芘(BAP)、茚并芘(IPY)和二苯并蒽(DBA)共5种PAHs的生物可给性,并基于考虑和不考虑生物可给性计算了场地PAHs经口摄入途径下的人体健康致癌风险及修复目标值。结果表明,(1)调查研究区域BBF、BAP、IPY和DBA浓度超出《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)规定的第一类用地筛选值;(2)土壤中PAHs的生物可给性范围为14.71%~56.42%;(3)在考虑生物可给性后,4种超标PAHs的健康风险均有所降低,其中BBF的风险值已低于国家导则规定的人体可接受水平;(4)引入生物可给性后BAP、IPY和DBA的修复目标值(95% UCL)为2.83、34.63和1.95 mg·kg-1,分别提高了2.6倍、3.4倍和1.5倍。对焦化场地典型污染物PAHs进行精细化健康风险评估,可以在一定程度上克服现有技术导则计算土壤PAHs修复目标值过于严格的问题。  相似文献   
9.
为研究焦化厂地下水中美国EPA优先控制的16种多环芳烃(PAHs)的分布特点和污染来源,本研究联合使用统计技术、正定矩阵因子分析(PMF)模型和风险商值法,深入分析了焦化厂地下水中PAHs的分布规律,定量解析了PAHs的污染来源,并且对其生态风险进行了科学评价.结果表明,焦化厂地下水中16种PAHs的总检出率较高,达到46.7%.地下水中∑16PAHs的浓度范围是n.d.~444.9μg·L-1,均值为1.88μg·L-1.不同生产车间地下水中PAHs的浓度存在明显差异,其中污染最重的车间位于焦油精制区,地下水中∑16PAHs的浓度为444.92μg·L-1.应用PMF源解析模型,识别出该焦化厂地下水中PAHs有二类污染源:一是石油的燃烧源,二是煤和生物质燃烧以及石油类的泄漏,二种污染源对焦化厂地下水中PAHs的贡献率分别为38.6%和61.4%.焦化厂地下水中∑16PAHs处在高生态风险等级,且有53.4%的地下水采样点单体PAHs的生态风险处在高风险等...  相似文献   
10.
    
Identification and determination of polycyclic aromatic hydrocarbons (PAHs) in Diesel exhaust in the working environment and assessment of workers’ occupational exposure to these suspected human carcinogens were the aim of this experimental investigation.

The range of exposure factors calculated on the basis of 9 individual PAH concentrations determined in personal air samples shows that time-averaged concentration of these compounds did not exceed the Polish Maximum Admissible Concentration (MAC) value for PAHs, that is, 2 μg·m–3. The highest concentrations of PAHs were determined in the breathing zone of forklift operators. The maximum exposure factor was 0.427 μg·m–3 (about 1/4 of MAC).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号