首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   400篇
  国内免费   40篇
安全科学   48篇
废物处理   8篇
环保管理   47篇
综合类   850篇
基础理论   194篇
污染及防治   137篇
评价与监测   141篇
社会与环境   21篇
灾害及防治   1篇
  2025年   4篇
  2024年   22篇
  2023年   39篇
  2022年   70篇
  2021年   96篇
  2020年   76篇
  2019年   73篇
  2018年   64篇
  2017年   90篇
  2016年   121篇
  2015年   139篇
  2014年   100篇
  2013年   74篇
  2012年   78篇
  2011年   65篇
  2010年   52篇
  2009年   69篇
  2008年   44篇
  2007年   47篇
  2006年   46篇
  2005年   15篇
  2004年   14篇
  2003年   16篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   8篇
排序方式: 共有1447条查询结果,搜索用时 16 毫秒
1.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   
2.
Spatio-temporal characteristics of PM10 concentration across Malaysia   总被引:1,自引:0,他引:1  
The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August–September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10–20 days quasi-biweekly (QBW) and 30–60 days lower frequency (LF) band of the intra-seasonal timescales. These intra-seasonal fluctuations show strong seasonality with the largest fraction of variance occurring during the boreal summer and the weakest variance during the winter. Generally, the LF intra-seasonal oscillation is stronger compared to the QBW intra-seasonal band.  相似文献   
3.
Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33–98% by mass of the organic compounds identified. PAHs accounted for 1–65% and biomarkers (hopanes and steranes) 1–8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07–1.55 ng m−3), 16 PAHs (0.02–1.83 ng m−3), and biomarkers (0.02–0.18 ng m−3). Daily levels of these organics were 4.89–74.38 ng m−3, 0.27–100.24 ng m−3, 0.14–4.39 ng m−3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source – most likely motor vehicles and space heating.  相似文献   
4.
池靖 《干旱环境监测》2006,20(4):251-253
对悬浮颗粒物室外人体暴露的测定一直受到可用资源的限制。设计有效的网络就要求对测定方法的选择、采样点的数量、采样时间、采样频率等进行调整。采样位置要求能表征因周围污染源对附近地区和城市最小影响的空间数值。虽然大多数判定PM是否达标的测定方法是每第3天至第6天的24h监测,但是室外人体暴露的评价要求连续监测一整天。最好有1h或更短时间的监测时段。更详细的粒径大小和化学性质数据也很有必要,因为较小的颗粒及其特殊的化学物质要比总的样品质量更有助于反映对健康的不良影响。  相似文献   
5.
池靖 《干旱环境监测》2006,20(3):187-192
对悬浮颗粒物室外人体暴露的测定一直受到可用资源的限制,设计有效的网络就要求对测定方法的选择、采样点的数量、采样时间、采样频率等进行调整。采样位置要求能表征因周围污染源对附近地区和城市最小影响的空间数值。虽然大多数判定PM是否达标的测定方法是每第3天至第6天的24h监测,但是室外人体暴露的评价要求连续监测一整天,最好有1h或更短时间的监测时段。更详细的粒径大小和化学性质数据也很有必要,因为较小的颗粒及其特殊的化学物质要比总的样品质量更有助于反映对缝康的不良影响。  相似文献   
6.
Simultaneous indoor and outdoor PM10 and PM2.5 concentration measurements were conducted in seven primary schools in the Athens area. Both gravimetric samplers and continuous monitors were used. Filters were subsequently analyzed for anion species. Moreover ultrafine particles number concentration was monitored continuously indoors and outdoors. Mean 8-hr PM10 concentration was measured equal to 229 ± 182 μg/m3 indoors and 166 ± 133 μg/m3 outdoors. The respective PM2.5 concentrations were 82 ± 56 μg/m3 indoors and 56 ± 26 μg/m3 outdoors. Ultrafine particles 8-h mean number concentration was measured equal to 24,000 ± 17,900 particles/cm3 indoors and 32,000 ± 14,200 particles/cm3 outdoors. PM10 outdoor concentrations exhibited a greater spatial variability than the corresponding PM2.5 ones. I/O ratios were close or above 1.00 for PM10 and PM2.5 and smaller than 1.00 for ultrafine particles. Very high I/O ratios were observed when intense activities took place. The initial results of the chemical analysis showed that accounts for the 6.6 ± 3.5% of the PM10 and for the 3.1 ± 1.4%.The corresponding results for PM2.5 are 12.0 ± 7.7% for and 3.1 ± 1.9% for . PM2.5 indoor concentrations were highly correlated with outdoor ones and the regression line had the largest slope and a very low intercept, indicative of no indoor sources of fine particulate . The results of the statistical analysis of indoor and outdoor concentration data support the use of as a proper surrogate for indoor PM of outdoor origin.  相似文献   
7.
为分析济南市PM2.5中二次组分的时空变化和影响因素,对济南市春季(2019年5月16—25日)、秋季(2019年10月15—24日)和冬季(2019年12月17—2020年1月16日)4个典型点位的PM2.5样品进行连续采样,并测定了PM2.5中水溶性离子、有机碳(OC)和元素碳(EC)的含量。结果表明:物流交通区的二次组分质量浓度最高(56.13μg·m?3),钢铁工业区的二次组分浓度比城市市区高,但是二次组分占比较城市市区低,清洁对照点的浓度和占比最低;济南市4个功能区SO42?和NO3?转化率均高于0.1,除清洁对照点外,城市市区、钢铁工业区和物流交通区的SO42?转化率明显高于NO3?转化率;济南市春季、秋季和冬季的ρ(NO3?)/ρ(SO42?)分别为0.67、2.57和1.98,春季PM2.5浓度以固定源贡献为主,秋季和冬季以移动源贡献为主;运用ISORROPIA热力学模型分析了含水量和pH对二次组分生成的影响,含水量会随着污染增大而增大,酸度和含水量对二次无机组分的转化机理产生影响,酸度会抑制二次无机组分的生成,而含水量会促进二次组分的生成;后向轨迹聚类分析结果表明,占比最高的轨迹(29.2%)来自东北方向的滨州和东营,基于潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT)分析PM2.5中二次组分质量浓度的潜在污染源区域,SO42?的主要贡献源区在济南市区北部的济阳区和东北方向的滨州、东营等,NO3?和NH4+的主要贡献源区在济南市区北方向的济阳区、东北方向的章丘区和南方向的莱芜区等。该研究结果可为中国北方城市细颗粒物进一步的治理和防控提供数据支撑和理论依据。  相似文献   
8.
空气污染程度与就诊率、呼吸道发病率及死亡率等有着密切的联系。兰州市在上世纪末曾被喻为卫星上看不到的城市,它的大气污染程度一直以来为人们所关注。利用2013年国家环保部公布的兰州市5个监测点(涵盖了4区1县)大气细粒子PM10及PM2.5的监测数据,针对全年的日均PM2.5与PM10质量浓度并结合了同期的气象因子进行分析研究,结果表明:春冬季为兰州大气中两种颗粒物的污染的高峰期(春季峰值为3月份,PM10及PM2.5质量浓度的月均值为309和103μg· m-3,超标倍数为1.062与0.436;冬季峰值为11月份,PM10及PM2.5质量浓度的月均值为203和85μg· m-3,超标倍数为0.353与0.7),夏秋季为低谷(波谷为9月份,PM10及PM2.5的月均值为96和39μg· m-3,均低于国家标准)。PM2.5与PM10质量浓度比值均在0.4与0.5之间,呈一定的线性关系,大气污染较轻。当温度在-3~0℃之间时,大气中PM2.5与PM10质量浓度变化较剧烈。露点温度高于-3.15时,使得PM10的质量浓度下降明显;当日均露点温度高于1.85时,PM2.5的质量浓度随着露点温度的增大而降低,说明湿沉降对着两种粒子的清除作用明显。降水对大气中的两种颗粒物均呈现清除作用,但是在降水后PM10质量浓度迅速回升,但PM2.5质量浓度却变化不大。风向偏西时,大气中细颗粒污染物浓度增加。风速的增加对PM2.5有一定的清除作用,但由于兰州市的地貌特征,使得大气中PM10的质量浓度增加。上述结果为兰州市大气污染的监测与治理及大气污染预报提供了重要的依据。  相似文献   
9.
以我国114个城市冬季(2013年12月-2014年2月)公布的PM25数据为基础,结合其他相关数据,运用空间自相关分析、克里格插值法和逐步回归分析法,研究我国冬季PM2.5浓度空间分布差异及其影响因素.结果显示,研究期间PM2.5在空间分布上具有高值集聚、低值集聚和高值邻域的低值集聚的变化特征,全局自相关系数Moran's I为0.27.PM2.5浓度分布由北到南、从内陆到沿海具有先升高后逐渐降低的变化趋势,高浓度区域主要集中在华北平原、长江中下游平原和陕西关中平原等地区,这些区域的冬季PM2.5平均质量浓度都达到150 μg·m-3以上,最高达250 μg·m-3.多因子逐步回归分析结果表明,人为活动对我国高浓度PM25(>150μg·m-3)分布影响显著,对低浓度PM2.5(≤75μg·m-3)分布影响不显著.市辖区人口密度和第二产业GDP是显著影响我国高浓度PM2.5分布的主要人为影响因子.市辖区建成区面积、全市年末总人口和市辖区道路面积等是影响我国城市间PM2.5浓度分布差异的主要人为影响因子.  相似文献   
10.
北京市区域城市化程度与颗粒物污染的相关性分析   总被引:4,自引:0,他引:4  
城市化程度的提升带来严重的资源环境问题,尤其是空气污染问题,严重影响了人类的健康。大气中的PM2.5等颗粒物已经成为影响我国城市空气质量的主要污染物。现有研究多数是对于多年来多地区的宏观研究,缺乏对于典型地区的具体数据报道。通过分析北京市PM2.5和PM10的质量浓度与不同城市化程度地区的相关关系,探索城市化程度对PM2.5等颗粒物浓度的影响。选取北京市7处具有代表性空气质量监测点,于2013年7月至10月对PM2.5和PM10的质量浓度进行连续4个月的实时监测,结合《北京市区域统计年鉴》中的城市化指标数据,包括常住人口密度、地区生产总值和林木覆盖率,对数据进行变化趋势分析、Pearson相关分析和回归分析。研究结论表明:由于北京市不同区域城市化程度不同导致颗粒物污染状况不同,每个区域的PM2.5与PM10的质量浓度虽有差异但均显著相关,PM2.5的质量浓度约占PM10的质量浓度的60%,PM2.5是PM10的主要组成成分。城市化程度与PM2.5等颗粒物浓度有明显的关系,PM2.5等颗粒物浓度与地区生产总值和林木覆盖率显著相关,与地区生产总值呈正相关,与林木覆盖率呈负相关;与常住人口密度呈正相关趋势但并不显著相关。其中,PM2.5的质量浓度与地区生产总值的相关系数为0.875,与林木覆盖率的相关系数为-0.838;PM10的质量浓度与地区生产总值相关系数为0.947,与林木覆盖率相关系数为-0.775。总体来看,PM2.5等颗粒物浓度随城市化程度的提高而增加,北京市区域城市化程度与颗粒物污染情况关系明显。我国在快速发展城市化的同时,应关注环境与经济相协调。调整产业结构,增加植被绿化,控制污染源将有助于减少北京市大气中颗粒物的污染程度,为我国的城市化进程提供相应的支持和保障。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号