首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
安全科学   1篇
环保管理   3篇
污染及防治   1篇
  2022年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 93 毫秒
1
1.
Post combustion carbon dioxide (CO2) capture is one of the most commonly adopted technologies for reducing industrial CO2 emissions, which is now an important goal given the widespread concern over global warming. Research on amine-based CO2 capture has mainly focused on improving effectiveness and efficiency of the CO2 capture process. Our research work focuses on studying the relationships among the significant parameters influencing CO2 production because an enhanced understanding of the intricate relationships among the parameters involved in the process is critical for improving efficiency of the CO2 capture process. This paper presents a statistical study that explores the relationships among parameters involved in the amine-based post combustion CO2 capture process at the International Centre for CO2 Capture (ITC) located in Regina, Saskatchewan of Canada. A multiple regression technique has been applied for analysis of data collected at the CO2 capture pilot plant at ITC. The parameters have been carefully selected to avoid issues of multicollinearity, and four mathematical models among the key parameters identified have been developed. The models have been tested, and accuracy of the models is found to be satisfactory. The models developed in this study describe part of the CO2 capture process and can help to predict performance of the CO2 capture process at ITC under different conditions. Some results from a preliminary validation process will also be presented.  相似文献   
2.
Post-combustion CO2 capture and storage (CCS) presents a promising strategy to capture, compress, transport and store CO2 from a high volume–low pressure flue gas stream emitted from a fossil fuel-fired power plant. This work undertakes the simulation of CO2 capture and compression integration into an 800 MWe supercritical coal-fired power plant using chemical process simulators. The focus is not only on the simulation of full load of flue gas stream into the CO2 capture and compression, but also, on the impact of a partial load. The result reveals that the energy penalty of a low capture efficiency, for example, at 50% capture efficiency with 10% flue gas load is higher than for 90% flue gas load at the equivalent capture efficiency by about 440 kWhe/tonne CO2. The study also addresses the effect of CO2 capture performance by different coal ranks. It is found that lignite pulverized coal (PC)-fired power plant has a higher energy requirement than subbituminous and bituminous PC-fired power plants by 40.1 and 98.6 MWe, respectively. In addition to the investigation of energy requirement, other significant parameters including energy penalty, plant efficiency, amine flow rate and extracted steam flow rate, are also presented. The study reveals that operating at partial load, for example at half load with 90% CO2 capture efficiency, as compared with full load, reduces the energy penalty, plant efficiency drop, amine flow rate and extracted steam flow rate by 9.9%, 24.4%, 50.0% and 49.9%, respectively. In addition, the effect of steam extracted from different locations from a series of steam turbine with the objective to achieve the lowest possible energy penalty is evaluated. The simulation shows that a low extracted steam pressure from a series of steam turbines, for example at 300 kPa, minimizes the energy penalty by up to 25.3%.  相似文献   
3.
Densities, viscosities and refractive indices of 4-diethylamino-2-butanol + water mixtures were measured over the entire concentration range of 0–1 mole fraction and temperature range from 298.15 to 343.15 K. Excess molar volumes, viscosity deviations, and molar refraction changes were calculated from the measurement results and correlated as a function of the mole fractions. Various models were used for correlation with the measured data. Out of these, the Redlich–Kister equation was the most suitable model that correlated best with experimental data. The percent absolute deviations obtained with this model were 0.03% for density, 0.88% for viscosity and 0.009% for refractive index.  相似文献   
4.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   
5.
Environmental Science and Pollution Research - In this work, new CO2 solubility data on three types of aqueous amine blends were reported to complement existing databases. The experiments were...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号