首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   7篇
  国内免费   1篇
安全科学   4篇
废物处理   18篇
环保管理   27篇
综合类   12篇
基础理论   32篇
污染及防治   15篇
评价与监测   7篇
社会与环境   4篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   9篇
  2012年   10篇
  2011年   3篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   8篇
  2006年   6篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
  1983年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
1.
Chlorinated ethenes such as trichloroethene (TCE), cis‐1,2‐dichloroethene (cis‐1,2‐DCE), and vinyl chloride along with per‐ and polyfluoroalkyl substances (PFAS) have been identified as chemicals of concern in groundwater; with many of the compounds being confirmed as being carcinogens or suspected carcinogens. While there are a variety of demonstrated in‐situ technologies for the treatment of chlorinated ethenes, there are limited technologies available to treat PFAS in groundwater. At a former industrial site shallow groundwater was impacted with TCE, cis‐1,2‐DCE, and vinyl chloride at concentrations up to 985, 258, and 54 µg/L, respectively. The groundwater also contained maximum concentrations of the following PFAS: 12,800 ng/L of perfluoropentanoic acid, 3,240 ng/L of perfluorohexanoic acid, 795 ng/L of perfluorobutanoic acid, 950 ng/L of perfluorooctanoic acid, and 2,140 ng/L of perfluorooctanesulfonic acid. Using a combination of adsorption, biotic, and abiotic degradation in situ remedial approaches, the chemicals of concern were targeted for removal from the groundwater with adsorption being utilized for PFAS whereas adsorption, chemical reduction, and anaerobic biodegradation were used for the chlorinated ethenes. Sampling of the groundwater over a 24‐month period indicated that the detected PFAS were treated to either their detection, or below the analytical detection limit over the monitoring period. Postinjection results for TCE, cis‐1,2‐DCE, and vinyl chloride indicated that the concentrations of the three compounds decreased by an order of magnitude within 4 months of injection, with TCE decreasing to below the analytical detection limit over the 24‐month monitoring period. Cis‐1,2‐DCE, and vinyl chloride concentrations decreased by over 99% within 8 months of injections, remaining at or below these concentrations during the 24‐month monitoring period. Analyses of Dehalococcoides, ethene, and acetylene over time suggest that microbiological and reductive dechlorination were occurring in conjunction with adsorption to attenuate the chlorinated ethenes and PFAS within the aquifer. Analysis of soil cores collected pre‐ and post‐injection, indicated that the distribution of the colloidal activated carbon was influenced by small scale heterogeneities within the aquifer. However, all aquifer samples collected within the targeted injection zone contained total organic carbon at concentrations at least one order of magnitude greater than the preinjection total organic carbon concentrations.  相似文献   
2.
Synthetic musk fragrances (SMFs) have been shown to be micropollutants in various aquatic and groundwater systems, often occurring at microgram per liter concentrations. Studies have shown that the most commonly detected SMFs in water are nitro musks and polycyclic musks. The SMFs are typically introduced into the environment in continuous streams such as from wastewater and land application of wastewater or sludge generated during wastewater treatment. Various studies for the treatment of SMFs have been undertaken for wastewater but studies for the treatment of SMFs in groundwater are limited, especially for in situ treatment. A pilot‐scale test was conducted to determine if the use of colloidal activated carbon (CAC) could effectively reduce dissolved concentrations of nitro and polycyclic synthetic musk compounds including musk xylene, musk ketone, galaxolide, and tonalide. The pilot test was carried out downgradient of a septic system in Central Canada where a series of nitrification and denitrification reactions are occurring in an unconfined aquifer. A 10‐weight percent CAC solution was injected into a series of temporary direct push injection points to target the synthetic musk plume. The plume contained galaxolide and tonalide concentrations up to 687 and 187 nanograms per liter (ng/L), respectively, while the concentrations of musk ketone and musk xylene were below the method detection limit (20 ng/L). A total of 13,950 liters of CAC solution was injected during one injection event. The pilot test results indicated that the CAC was effectively delivered to the target injection zone resulting in an increase in total organic carbon concentrations within the saturated soil greater than two orders of magnitude compared to the background concentrations. Analyses of the groundwater chemistry before and post‐injection indicated that the CAC had no detrimental impact on the groundwater quality while reducing the concentration of dissolved galaxolide and tonalide within the plume to below the method detection limits within 51 days of injection with the exception of two of the 14 wells monitored which had galaxolide and tonalide concentrations up to 78 and 35 ng/L. Within 6 months of application, the concentrations of galaxolide and tonalide had decreased to below the method detection limits. Subsequent monitoring of the groundwater quality over a one‐year period failed to detect galaxolide and tonalide, suggesting that the CAC was effective in attenuating the galaxolide and tonalide.  相似文献   
3.
A pilot‐scale test was conducted in a saline aquifer to determine if a petroleum hydrocarbon (PHC) plume containing benzene (B), toluene (T), ethylbenzene (E), xylenes (X), methyl tert‐butyl ether (MTBE), and tert‐butyl alcohol (TBA) could be treated effectively using a sequential treatment approach that employed in situ chemical oxidation (ISCO) and enhanced bioremediation (EBR). Chemical oxidants, such as persulfate, have been shown to be effective in reducing dissolved concentrations of BTEX (B + T + E + X) and additives such as MTBE and TBA in a variety of geochemical environments including saline aquifers. However, the lifespan of the oxidants in saline environments tends to be short‐lived (i.e., hours to days) with their effectiveness being limited by poor delivery, inefficient consumption by nontargeted species, and back‐diffusion processes. Similarly, the addition of electron acceptors has also been shown to be effective at reducing BTEX and associated additives in saline groundwater through EBR, however EBR can be limited by various factors similar to ISCO. To minimize the limitations of both approaches, a pilot test was carried out in a saline unconfined PHC‐impacted aquifer to evaluate the performance of an engineered, combined remedy that employed both approaches in a sequence. The PHC plume had total BTEX, MTBE, and TBA concentrations of up to 4,584; 55,182; and 1,880 μg/L, respectively. The pilot test involved injecting 13,826 L of unactivated persulfate solution (19.4 weight percent (wt.%) sodium persulfate (Na2S2O8) solution into a series of injection wells installed within the PHC plume. Parameters monitored over a 700‐day period included BTEX, MTBE, TBA, sulfate, and sulfate isotope concentrations in the groundwater, and carbon and hydrogen isotopes in benzene and MTBE in the groundwater. The pilot test data indicated that the BTEX, MTBE, and TBA within the PHC plume were treated over time by both chemical oxidation and sulfate reduction. The injection of the unactivated persulfate resulted in short‐term decreases in the concentrations of the BTEX compounds, MTBE, and TBA. The mean total BTEX concentration from the three monitoring wells within the pilot‐test area decreased by up to 91%, whereas MTBE and TBA mean concentrations decreased by up to 39 and 58%, respectively, over the first 50 days postinjection in which detectable concentrations of persulfate remained in groundwater. Concentrations of the BTEX compounds, MTBE, and TBA rebounded at the Day 61 marker, which corresponded to no persulfate being detected in the groundwater. Subsequent monitoring of the groundwater revealed that the concentrations of BTEX continued to decrease with time suggesting that EBR was occurring within the plume. Between Days 51 and 487, BTEX concentrations decreased an additional 84% from the concentration measured on Day 61. Mean concentrations of MTBE showed a reduction during the EBR phase of remediation of 33% while the TBA concentration appeared to decrease initially but then increased as the sulfate concentration decreased as a result of MTBE degradation. Isotope analyses of dissolved sulfate (34S and 18O), and compound‐specific isotope analysis (CSIA) of benzene and MTBE (13C and 2H) supported the conclusions that ISCO and EBR processes were occurring at different stages and locations within the plume over time.  相似文献   
4.
农药虽然可以控制病虫害,但其广泛使用造成自然环境的污染,致使非靶标生物暴露于农药污染环境中。即使低浓度农药暴露也会直接或间接影响水生生物群落。前期人工池塘(中宇宙)研究结果表明痕量毒死蜱(chlorpyrifos, CPF)可改变蝌蚪体态和神经发育。造成这个结果的原因可能为:1)CPF暴露的直接影响;2)农药造成了浮游动物数量下降扰乱食物网。为了明确原因,我们在CPF耐受浮游动物存在的情况下,考察了CPF对两栖动物发育的影响,这种浮游动物是不同营养级别水生生物群落的重要组成部分。豹蛙(Lithobates pipiens)蝌蚪饲养在中宇宙的环境,经过变态期,环境中含有0或1 μg/L CPF,或CPF敏感型浮游动物Daphnia pulex。CPF发育期暴露致使蝌蚪蜕变时视顶盖、延髓、间脑相对更宽,而这一结果与中宇宙中浮游动物种群无关。因此,CPF直接影响大脑发育,与不同营养级别的群落的无关。至于身体形态方面,CPF对无CPF敏感型浮游动物的中宇宙中饲养的蝌蚪蜕变形态没有影响,但在没有CPF污染时,蝌蚪身体形态对浮游动物种群数量很敏感。研究表明,生态水平的低剂量有机磷农药暴露可直接影响脊椎动物的神经发育。 精选自Sara J. McClelland, Randall J. Bendis, Rick A. Relyea, Sarah K. Woodley. Insecticide-induced changes in amphibian brains: How sublethal concentrations of chlorpyrifos directly affect neurodevelopment. Environmental Toxicology and Chemistry,2018,37:2692–2698.
详情请见 https://doi.org/10.1002/etc.4240
  相似文献   
5.
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.  相似文献   
6.
The Environmental Monitoring and Assessment Program (EMAP) is proposing an ambitious agenda to assess the status of streams and estuaries in a 12-State area of the western United States by the end of 2003. Additionally, EMAP is proposing to access landscape conditions as they relate to stream and estuary conditions across the west. The goal of this landscape project is to develop a landscape model that can be used to identify the relative risks of streams and estuaries to potential declines due to watershed-scale, landscape conditions across the west. To do so, requires an understanding of quantitative relationships between landscape composition and pattern metrics and parameters of stream and estuary conditions. This paper describes a strategic approach for evaluating the degree to which landscape composition and pattern influence stream and estuary condition, and the development and implementation of a spatially-distributed, landscape analysis approach.  相似文献   
7.
Current wastewater treatment technologies do not remove many unregulated hydrophilic compounds, and there is growing interest that low levels of these compounds, referred to as emerging contaminants, may impact human health and the environment. A probabilistic-designed monitoring network was employed to infer the extent of Florida’s ambient freshwaters containing the wastewater (Includes reuse water, septic systems leachate, and wastewater treatment effluent.) indicators sucralose, acetaminophen, carbamazepine, and primidone and those containing the widely used pesticide imidacloprid. Extent estimates with 95% confidence bounds are provided for canals, rivers, streams, small and large lakes, and unconfined aquifers containing ultra-trace concentrations of these compounds as based on analyses of 2015 sample surveys utilizing 528 sites. Sucralose is estimated to occur in greater than 50% of the canal, river, stream, and large lake resource extents. The pharmaceuticals acetaminophen, carbamazepine, and primidone are most prevalent in rivers, with approximately 30% of river kilometers estimated to contain at least one of these compounds. Imidacloprid is estimated to occur in 50% or greater of the canal and river resource extents, and it is the only compound found to exceed published toxicity or environmental effects standards. Geospatial analyses show sucralose detection frequencies within Florida’s drainage basins to be significantly related to the percentage of urban land use (R2?=?0.36, p?<?0.001), and imidacloprid detection frequencies to be significantly related to the percentage of urban and agricultural land use (R2?=?0.47, p?<?0.001). The extent of the presence of these compounds highlights the need for additional emerging contaminant studies especially those examining effects on aquatic biota.  相似文献   
8.
Understanding mechanisms influencing the movement paths of animals is essential for comprehending behavior and accurately predicting use of travel corridors. In Yellowstone National Park (USA), the effects of roads and winter road grooming on bison (Bison bison) travel routes and spatial dynamics have been debated for more than a decade. However, no rigorous studies have been conducted on bison spatial movement patterns. We collected 121 380 locations from 14 female bison with GPS collars in central Yellowstone to examine how topography, habitat type, roads, and elevation affected the probability of bison travel year-round. We also conducted daily winter bison road use surveys (2003-2005) to quantify how topography and habitat type influenced spatial variability in the amount of bison road travel. Using model comparison techniques, we found the probability of bison travel and spatial distribution of travel locations were affected by multiple topographic and habitat type attributes including slope, landscape roughness, habitat type, elevation, and distances to streams, foraging areas, forested habitats, and roads. Streams were the most influential natural landscape feature affecting bison travel, and results suggest the bison travel network throughout central Yellowstone is spatially defined largely by the presence of streams that connect foraging areas. Also, the probability of bison travel was higher in regions of variable topography that constrain movements, such as in canyons. Pronounced travel corridors existed both in close association with roads and distant from any roads, and results indicate that roads may facilitate bison travel in certain areas. However, our findings suggest that many road segments used as travel corridors are overlaid upon natural travel pathways because road segments receiving high amounts of bison travel had similar landscape features as natural travel corridors. We suggest that most spatial patterns in bison road travel are a manifestation of general spatial travel trends. Our research offers novel insights into bison spatial dynamics and provides conceptual and analytical frameworks for examining movement patterns of other species.  相似文献   
9.
The field of toxicology has traditionally assessed the risk of contaminants by using laboratory experiments and a range of pesticide concentrations that are held constant for short periods of time (1-4 days). From these experiments, one can estimate the concentration that causes no effect on survival. However, organisms in nature frequently experience multiple, applications of pesticides over time rather than a single constant concentration. In addition, organisms are embedded in ecological communities that can propagate indirect effects through a food web. Using outdoor mesocosms, we examined how low concentrations (10-250 microg/L) of a globally common insecticide (malathion) applied at various amounts, times, and frequencies affected aquatic communities containing zooplankton, phytoplankton, periphyton, and larval amphibians (reared at two densities) for 79 days. All application regimes caused a decline in zooplankton, which initiated a trophic cascade in which there was a bloom in phytoplankton and, in several treatments, a subsequent decline in the competing periphyton. The reduced periphyton had little effect on wood frogs (Rana sylvatica), which have a short time to metamorphosis. However, leopard frogs (Rana pipiens) have a longer time to metamorphosis, and they experienced large reductions in growth and development, which led to subsequent mortality as the environment dried. Hence, malathion (which rapidly breaks down) did not directly kill amphibians, but initiated a trophic cascade that indirectly resulted in substantial amphibian mortality. Importantly, repeated applications of the lowest concentration (a "press treatment" consisting of seven weekly applications of 10 microg/L) caused larger impacts on many of the response variables than single "pulse" applications that were 25 times as great in concentration. These results are not only important because malathion is the most commonly applied insecticide and is found in wetlands, but also because the mechanism underlying the trophic cascade is common to a wide range of insecticides, offering the possibility of general predictions for the way in which many insecticides impact aquatic communities and the populations of larval amphibians.  相似文献   
10.
The Water Erosion Prediction Project (WEPP) model has been tested for its ability to predict soil erosion, runoff, and sediment delivery over a wide range of conditions and scales for both hillslopes and watersheds. Since its release in 1995, there has been considerable interest in adding a chemical transport element to it. Total phosphorus (TP) loss at the watershed outlet was simulated as the product of TP in the soil, amount of sediment at the watershed outlet, and an enrichment ratio (ER) factor. WEPP can be coupled with a simple algorithm to simulate phosphorus transport bound to sediment at the watershed outlet. The objective of this work was to incorporate and test the ability of WEPP in estimatingTP loss with sediment at the small watershed scale. Two approaches were examined. One approach (P-EER) estimated ER according to an empirical relationship; the other approach used the ER calculated by WEPP (P-WER).The data used for model performance test were obtained from two side-by-side watersheds monitored between 1976 and 1980. The watershed sizes were 5.05 and 6.37 ha, and each was in a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Measured and simulated results were compared for the period April to October in each year. There was no statistical difference between the mean measured and simulated TP loss. The Nash-Sutcliffe coefficient was 0.80 and 0.78 for the P-EER and P-WER methods, respectively. It was critical for both methods that WEPP adequately represent the biggest sediment yield events because sediment is the main driver for TP loss so that the model can adequately simulate TP losses bound to sediment. The P-WER method is recommended because it does not require use of empirical parameters to estimate TP loss at the watershed outlet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号