首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
安全科学   6篇
基础理论   1篇
污染及防治   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2006年   2篇
  2003年   1篇
  1982年   1篇
排序方式: 共有9条查询结果,搜索用时 31 毫秒
1
1.
Objectives: This paper quantifies pediatric thoracoabdominal response to belt loading to guide the scaling of existing adult response data and to assess the validity of a juvenile porcine abdominal model for application to the development of physical and computational models of the human child. Methods: Table-top belt-loading experiments were performed on 6, 7, and 15 year-old pediatric post-mortem human subjects (PMHS). Response targets are reported for diagonal belt and distributed loading of the anterior thorax and for horizontal belt loading of the abdomen. Results: The pediatric PMHS exhibited abdominal response similar to the swine, including the degree of rate sensitivity. The thoraces of the PMHS were as stiff as, or slightly more stiff than, published adult corridors. Conclusions: An assessment of age-related changes in thoracic stiffness suggests that the effective stiffness of the chest increases through the fourth decade of life and then decreases, resulting in stiffness values similar for children and elderly adults.  相似文献   
2.
Thoracic deformation under an applied load is an established indicator of injury risk, but the force required to achieve an injurious level of deformation currently is not understood adequately. This article evaluates how two potentially important factors, loading condition and muscle tensing, affect the structural response of the dynamically loaded thorax. Structural models of two human cadaver thoraxes and two porcine thoraxes were used to quantify the effects. The human cadavers, which represent anthropometric extremes, were subjected to anterior loading from (1) a 5.1-cm-wide belt oriented diagonally (i.e., seatbelt-like loading), (2) a 15.2-cm-diameter rigid hub, and (3) a 20.3-cm-wide belt oriented laterally (i.e., a distributed load). A structural model having the mathematical formulation of a quasilinear viscoelastic material model was used to model the elastic and viscous response, with ramp-hold tests used to determine the model coefficients. The effect of thoracic musculature was assessed using similar ramp-hold tests on the porcine subjects, each with and without forced muscle contraction. Even maximally contracted thoracic musculature is shown to have a minimal effect on the response, with similar elastic and viscous characteristics exhibited by each subject regardless of muscle tone. The elastic response is shown to be approximately a factor of three stiffer for diagonal belt loading and for this distributed loading condition than for the hub loading, indicating that the response is influenced most by the particular anatomical structures that are engaged and, secondarily, by the area of load application. Specifically, shoulder involvement is shown to have a strong influence. The force relaxation is found to be pronounced, but insensitive to the loading condition, with long-time force relaxation coefficients (G( infinity )) in the range of 0.1 to 0.3. The findings of this study provide restraint-specific guidelines for the force-deflection characteristics of both physical and computational thoracic models.  相似文献   
3.
4.
D Brown  RS Thompson 《Chemosphere》1982,11(4):427-435
Mussels (Mytilus edulis) were exposed to di-2-ethylhexyl phthalate (DEHP) and to di-isodecyl phthalate (DIDP) over a period of 28 days. The bioconcentration factor (BCF) as measured by 14C analysis, reached estimated plateau levels corresponding to mean BCF values of approximately 2500 and 3500 for the DEHP and DIDP respectively. The mussels were then held in clean seawater for a further 14 days and 14C analysis showed a depuration half-life of approximately 3.5 days for both phthalates. During the whole 42 days of the experiment general observations on the health of the animals showed no evidence of any adverse effects.  相似文献   
5.
Objectives: Understanding how lower extremity injuries from automotive intrusion and underbody blast (UBB) differ is of key importance when determining whether automotive injury criteria can be applied to blast rate scenarios. This article provides a review of existing injury risk analyses and outlines an approach to improve injury prediction for an expanded range of loading rates. This analysis will address issues with existing injury risk functions including inaccuracies due to inertial and potential viscous resistance at higher loading rates.

Methods: This survival analysis attempts to minimize these errors by considering injury location statistics and a predictor variable selection process dependent upon failure mechanisms of bone. Distribution of foot/ankle/leg injuries induced by axial impact loading at rates characteristic of UBB as well as automotive intrusion was studied and calcaneus injuries were found to be the most common injury; thus, footplate force was chosen as the main predictor variable because of its proximity to injury location to prevent inaccuracies associated with inertial differences due to loading rate. A survival analysis was then performed with age, sex, dorsiflexion angle, and mass as covariates. This statistical analysis uses data from previous axial postmortem human surrogate (PMHS) component leg tests to provide perspectives on how proximal boundary conditions and loading rate affect injury probability in the foot/ankle/leg (n = 82).

Results: Tibia force-at-fracture proved to be up to 20% inaccurate in previous analyses because of viscous resistance and inertial effects within the data set used, suggesting that previous injury criteria are accurate only for specific rates of loading and boundary conditions. The statistical model presented in this article predicts 50% probability of injury for a plantar force of 10.2 kN for a 50th percentile male with a neutral ankle position. Force rate was found to be an insignificant covariate because of the limited range of loading rate differences within the data set; however, compensation for inertial effects caused by measuring the force-at-fracture in a location closer to expected injury location improved the model's predictive capabilities for the entire data set.

Conclusions: This study provides better injury prediction capabilities for both automotive and blast rates because of reduced sensitivity to inertial effects and tibia–fibula load sharing. Further, a framework is provided for future injury criteria generation for high rate loading scenarios. This analysis also suggests key improvements to be made to existing anthropomorphic test device (ATD) lower extremities to provide accurate injury prediction for high rate applications such as UBB.  相似文献   
6.
A range of pesticides are available in Australia for use in agricultural and domestic settings to control pests, including organophosphate and pyrethroid insecticides, herbicides, and insect repellents, such as N,N-diethyl-meta-toluamide (DEET). The aim of this study was to provide a cost-effective preliminary assessment of background exposure to a range of pesticides among a convenience sample of Australian residents. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n = 24 pools of 100 specimens). Concentrations of urinary pesticide biomarkers were quantified using solid-phase extraction coupled with isotope dilution high-performance liquid chromatography–tandem mass spectrometry. Geometric mean biomarker concentrations ranged from <0.1 to 36.8 ng/mL for organophosphate insecticides, <0.1 to 5.5 ng/mL for pyrethroid insecticides, and <0.1 to 8.51 ng/mL for all other biomarkers with the exception of the DEET metabolite 3-diethylcarbamoyl benzoic acid (4.23 to 850 ng/mL). We observed no association between age and concentration for most biomarkers measured but noted a “U-shaped” trend for five organophosphate metabolites, with the highest concentrations observed in the youngest and oldest age strata, perhaps related to age-specific differences in behavior or physiology. The fact that concentrations of specific and non-specific metabolites of the organophosphate insecticide chlorpyrifos were higher than reported in USA and Canada may relate to differences in registered applications among countries. Additional biomonitoring programs of the general population and focusing on vulnerable populations would improve the exposure assessment and the monitoring of temporal exposure trends as usage patterns of pesticide products in Australia change over time.  相似文献   
7.
Sand dunes are complex systems that contain several habitats, often as mosaics or transitions between types. Several of these habitats are afforded protection under European Legislation and in the UK nationally within Special Areas of Conservation (SAC) and Sites of Special Scientific Interest (SSSI). Natural England has a statutory duty to report to Europe on the conservation status and condition of sand dunes; and is required to report to the UK Government on designated sites. To achieve this we have sought ways of capturing, analysing and interpreting data on the extent and location of sand dune habitats. This requires an ability to be able to obtain data over large areas of coastline in an efficient way. Natural England and Environment Agency Geomatics have worked collaboratively for over 16 years, sharing data and ecological knowledge. In 2012 work started to evaluate the use of remote sensing to map UK BAP and Annex I sand dune habitats. A methodology has now been developed and tested to map sand dune habitats. The key objective was to provide an operational tool that will help to map these habitats and understand change on sites around England. This has been achieved through analysis of LIDAR and Compact Airborne Spectrographic Imager (CASI) data using Object Orientated Image Analysis. Quality Control (QC) and accuracy assessments have shown this approach to be successful and 11 sites have been mapped to date. These techniques are providing a new approach to monitoring change in coastal vegetation communities and informing management of protected sites.  相似文献   
8.
OBJECTIVE: This article assesses the position-dependent injury tolerance of the hip in the frontal direction based on testing of eight postmortem human subjects. METHODS: For each subject, the left and right hemipelvis complex was axially loaded using a previously developed test configuration. Six positions were defined from a seated femur neutral condition, combining flexed, neutral, and extended femur positions with abducted, neutral, and adducted positions. RESULTS: Axial injury tolerances based on peak force were found to be 6,850 +/- 840 N in the extended, neutral position and 4,080 +/- 830 N in the flexed, neutral position. From the flexed neutral orientation, the peak axial force increased 18% for 20 degrees abduction and decreased 6% for 20 degrees adduction. From the extended, neutral orientation, the peak axial force decreased 4% for 20 degrees abduction and decreased 3% for 20 degrees adduction. However, as there is evidence that increases in loading may occur after the initiation of fracture, the magnitude of the peak force is likely related to the extent of injury, not to the initial tolerance. Using the axial femur force at the initiation of fracture (assessed with acoustic crack sensors) as a potentially more relevant indicator of injury may lower the existing injury criteria. This fracture initiation force varied by position from 3,010 +/- 560 N in the flexed, neutral position to 5,470 N in the extended, abducted position. Further, there was a large position-dependent variation in the ratio of fracture initiation force to the peak axial force. The initiation of fracture was 83% of the peak axial force in the extended, abducted position, but the ratio was 34% in the extended, adducted position. CONCLUSIONS: This may have significant implications for the development of pelvic injury criteria by automobile designers attempting to mitigate pelvis injuries.  相似文献   
9.
First responders and military personnel are particularly susceptible to behind armor blunt thoracic trauma in occupational scenarios. The objective of this study was to develop an armored thorax injury risk criterion for short duration ballistic impacts. 9 cadavers and 2 anthropomorphic test dummies (AUSMAN and NIJ 0101.04 surrogate) were tested over a range of velocities encompassing low severity impacts, medium severity impacts, and high severity impacts based upon risk of sternal fracture. Thoracic injuries ranged from minor skin abrasions (abbreviated injury scale [AIS] 1) to severe sternal fractures (AIS 3+) and were well correlated with impact velocity and bone mineral density. 8 male cadavers were used in the injury risk criterion development. A 50% risk of AIS 3+ injury corresponded to a peak impact force of 24,900 +/- 1,400 N. The AUSMAN impact force correlated strongly with impact velocity. Recommendations to improve the biofidelity of the AUSMAN include implementing more realistic viscera and decreasing the skin thickness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号