首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
安全科学   1篇
污染及防治   3篇
评价与监测   2篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.

Purpose

The major aromatic constituents of petroleum products viz. benzene, toluene, and mixture of xylenes (BTX) are responsible for environmental pollution and inflict serious public concern. Therefore, BTX biodegradation potential of individual as well as formulated bacterial consortium was evaluated. This study highlighted the role of hydrogen peroxide (H2O2), nitrate, and phosphate in stimulating the biodegradation of BTX compounds under hypoxic condition.

Materials and methods

The individual bacterium viz. Bacillus subtilis DM-04 and Pseudomonas aeruginosa M and NM strains and a consortium comprising of the above bacteria were inoculated to BTX-containing liquid medium and in soil. The bioremediation experiment was carried out for 120?h in BTX-containing liquid culture and for 90?days in BTX-contaminated soil. The kinetics of BTX degradation either in presence or absence of H2O2, nitrate, and phosphate was analyzed using biochemical and gas chromatographic (GC) technique.

Results

Bacterial consortium was found to be superior in degrading BTX either in soil or in liquid medium as compared to degradation of same compounds by individual strains of the consortium. The rate of BTX biodegradation was further enhanced when the liquid medium/soil was exogenously supplemented with 0.01?% (v/v) H2O2, phosphate, and nitrate. The GC analysis of BTX biodegradation (90?days post-inoculation) in soil by bacterial consortium confirmed the preferential degradation of benzene compared to m-xylene and toluene.

Conclusions

It may be concluded that the bacterial consortium in the present study can degrade BTX compounds at a significantly higher rate as compared to the degradation of the same compounds by individual members of the consortium. Further, addition of H2O2 in the culture medium as an additional source of oxygen, and nitrate and phosphate as an alternative electron acceptor and macronutrient, respectively, significantly enhanced the rate of BTX biodegradation under oxygen-limited condition.  相似文献   
2.

Purpose  

Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium.  相似文献   
3.
Environmental Science and Pollution Research - Agricultural soil acts as a source and sink of important greenhouse gases (GHGs) like methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)....  相似文献   
4.
Land use impact on soil quality in eastern Himalayan region of India   总被引:1,自引:0,他引:1  
Quantitative assessment of soil quality is required to determine the sustainability of land uses in terms of environmental quality and plant productivity. Our objective was to identify the most appropriate soil quality indicators and to evaluate the impact of six most prevalent land use types (natural forestland, cultivated lowland, cultivated upland terrace, shifting cultivation, plantation land, and grassland) on soil quality in eastern Himalayan region of India. We collected 120 soil samples (20 cm depth) and analyzed them for 29 physical, chemical, and biological soil attributes. For selection of soil quality indicators, principal component analysis (PCA) was performed on the measured attributes, which provided four principal components (PC) with eigenvalues >1 and explaining at least 5 % of the variance in dataset. The four PCs together explained 92.6 % of the total variance. Based on rotated factor loadings of soil attributes, selected indicators were: soil organic carbon (SOC) from PC-1, exchangeable Al from PC-2, silt content from PC-3, and available P and Mn from PC-4. Indicators were transformed into scores (linear scoring method) and soil quality index (SQI) was determined, on a scale of 0–1, using the weighting factors obtained from PCA. SQI rating was the highest for the least-disturbed sites, i.e., natural forestland (0.93) and grassland (0.87), and the lowest for the most intensively cultivated site, i.e., cultivated upland terrace (0.44). Ratings for the other land uses were shifting cultivation (0.60)?>?cultivated low land (0.57)?>?plantation land (0.54). Overall contribution (in percent) of the indicators in determination of SQI was in the order: SOC (58 %)?>?exch. Al (17.1 %)?>?available P (8.9 %)?>?available Mn (8.2 %)?>?silt content (7.8 %). Results of this study suggest SOC and exch. Al as the two most powerful indicators of soil quality in study area. Thus, organic C and soil acidity management holds the key to improve soil quality under many exploitatively cultivated land use systems in eastern Himalayan region of India.  相似文献   
5.
Environmental Monitoring and Assessment - Evaporation is an important meteorological variable that has a great impact on water resources. In the current research, climatology data, and seasonal...  相似文献   
6.
The effects of some commonly used pH conditioners, viz., lime, banana ash, the carbonate and the bicarbonate of sodium and potassium and their binary mixture, on simultaneous removal of arsenic and iron ions from water have been studied. KHCO3 has been found to be the most suitable pH conditioner for the purpose. About 80 mg/L KHCO3 can remove both arsenate and iron ions from initial 250 μg/L and 20 mg/L to below their respective guideline values of the WHO for drinking water, retaining the final pH in the acceptable range for drinking. The simultaneous removal of arsenate and iron by the pH-conditioners decreases in the order: Lime > KHCO3 > NaHCO3 > K2CO3 > Na2CO3 > ash. However, lime requires post-treatment correction of highly alkaline pH. The arsenate ion is removed predominantly through goethite or ferrihydrite in the presence of the bicarbonates and through ferric hydroxide in the presence of the more alkaline pH-conditioners. KHCO3 is more advantageous over the more basic substances including NaHCO3, because with it, one not only needs the smallest dose but also can avoid careful adjustment of the dose for regulating the initial and the final pH. The paper clearly demonstrates the potential of KHCO3 to substitute the currently used pH-conditioners, viz., ash, lime and NaHCO3 for simultaneous removal of arsenate and iron ions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号