首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   1篇
基础理论   2篇
污染及防治   3篇
评价与监测   1篇
  2021年   1篇
  2013年   3篇
  2006年   2篇
  2004年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.

The purposes of this study were to determine the prevalence of osteoporosis after 15 years of reduced cadmium exposure and to determine the association between urinary cadmium (U-Cd) and osteoporosis. The study was conducted with 937 participants (109 males, 828 females) living in a cadmium-contaminated area in northwestern Thailand. All participants were required to respond to a questionnaire. Bone mineral density (BMD) was investigated by measurements taken at the calcaneus by dual-energy X-ray absorptiometry. U-Cd, which reflects the amount of cadmium contained in the body, was measured by atomic absorption spectrophotometry (AAS). The geometric mean of U-Cd was significantly higher in males than in females (p < 0.001). The mean level of BMD for females was found to be statistically significantly lower than that for males (p < 0.001). Increasing U-Cd levels were correlated with decreasing levels of BMD. The association between U-Cd and osteoporosis appeared to exist only at concentrations of U-Cd ≥ 10 μg/g creatinine (OR = 2.7, 95% CI = 1.2–5.9). It can be concluded that despite discontinued or reduced cadmium exposure for more than 10 years, the effect of cadmium toxicity on bone, which is stronger in women, continues, as cadmium, once absorbed, will accumulate in the human body for a long time due to its extremely long half-life.

  相似文献   
2.
The spatial and temporal distribution of macrobenthic assemblages in the San Francisco Estuary and Sacramento–San Joaquin River Delta were identified using hierarchical cluster analysis of 501 samples collected between 1994 and 2008. Five benthic assemblages were identified that were distributed primarily along the salinity gradient: (1) a polyhaline assemblage that inhabits the Central Bay, (2) a mesohaline assemblage that inhabits South Bay and San Pablo Bay, (3) a low-diversity oligohaline assemblage primarily in Suisun Bay, (4) a low-diversity sand assemblage that occurs at various locations throughout the Estuary, and (5) a tidal freshwater assemblage in the Delta. Most sites were classified within the same assemblage in different seasons and years, but a few sites switched assemblage designations in response to seasonal changes in salinity from freshwater inflows.  相似文献   
3.
Mercury entering wetland environments can be microbially methylated to methylmercury. The purpose of this study was to investigate the historical rate of mercury accumulation and distribution of total and methylmercury in soil profile of Louisiana coastal marshes. Two sediment cores each were taken from Louisiana freshwater marsh and salt marsh. Vertical accretion was determined using the 137Cs dating technique. Total and methylmercury were determined with depth in the soil profiles. The fresh marsh soil on a dry weight basis contained more total and methylmercury than the salt marsh. Average vertical accretion rates in freshwater marsh and salt marsh were 0.90 and 0.75 cm year(-1), respectively. Average total and methylmercury content (to a depth of 30 cm) was 140 and 4.19 microg kg(-1) and 80 and 1.34 microg kg(-1) for the fresh and salt marsh, respectively. Due to greater sediment input resulting in a higher bulk density the salt marsh contained more total mercury per m2 (to 30 cm depth) than the fresh water marsh (5340 microg m(-2) as compared to 2929 microg m(-2)). The amount of methylmercury per m2 to depth of 30 cm was approximately the same for each marsh.  相似文献   
4.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha-1) on 137Cs adsorption-desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26-99.97%) of added 137Cs (3.7 × 103-7.03 × 105 Bq l-1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher Kads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4+, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between Kads and soil pH was observed. The 137Cs adsorption-desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09-0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   
5.
Adsorption and desorption of 137Cs by acid sulphate soils from the Nakhon Nayok province, South Central Plain of Thailand located near the Ongkarak Nuclear Research Center (ONRC) were investigated using a batch equilibration technique. The influence of added limestone (12 and 18 tons ha?1) on 137Cs adsorption–desorption was studied. Based on Freundlich isotherms, both adsorption and desorption of 137Cs were nonlinear. A large portion (98.26–99.97%) of added 137Cs (3.7?×?103?7.03?×?105 Bq l?1) was sorbed by the soils with or without added lime. The higher lime treatments, however, favoured stronger adsorption of 137Cs as compared with soil with no lime, which was supported by higher K ads values. The addition of lime, the cation exchange capacity and pH of the soil increased and hence favoured the stronger adsorption of 137Cs. Acid sulphate soils with a high clay content, medium to high organic matter, high CEC, and predominant clay types consisting of a mixture of illite, kaolinite, and montmorillonite were the main soil factors contributing to the high 137Cs adsorption capacity. Competing cations such as NH4 +, K+, Na+, Ca2+, and Mg2+ had little influence on 137Cs adsorption as compared with liming, where a significant positive correlation between K ads and soil pH was observed. The 137Cs adsorption–desorption characteristics of the acid sulphate soils studied exhibited a very strong irreversible sorption pattern. Only a small portion (0.09–0.58%) of 137Cs adsorbed at the highest added initial 137Cs concentration was desorbed by four successive soil extractions. Results clearly demonstrated that Nakhon Nayok province acid sulphate soils have a high 137Cs adsorption capacity, which limits the 137Cs bioavailability.  相似文献   
6.
Eggshell calcium carbonate (ECC) and eggshell calcium carbonate treated with high temperature (ECC-600) were prepared from chicken eggshell waste. ECC was obtained by crushing eggshell waste, eliminating membranes and followed by sieving. In the case of ECC-600, ECC powder was additionally heated at 600 °C for 2 h. Both were used to promote as fillers compared to that of commercial light-precipitated calcium carbonate (commercial CaCO3) with various loading levels (i.e., 0, 25, 50 and 75 phr) in epoxidized natural rubber containing 25 mol% of epoxide group (ENR-25). Among the three types of fillers (i.e., ECC, ECC-600 and commercial CaCO3), ECC filled materials showed superior vulcanization characteristics by the increasing of maximum torque (MH) and cure rate index (CRI) with the reducing of cure time (tc90) and scorch time (ts2). The highest tensile properties as well as the lowest tension set value were also observed. Morphological property revealed that ECC was greater interfacial adhesion than those of others. In addition, dynamic mechanical properties of vulcanizates containing ECC, storage modulus (E′) was the highest and glass transition temperature (T g ) shifted toward high temperature. Increasing of loading levels of any fillers affected the increase of MH and CRI with reducing of tc90 and ts2. However, tensile properties decreased with increasing filler content but it did not affect T g shifting except for a series of vulcanizates containing ECC.  相似文献   
7.
Paraquat adsorption, degradation, and remobilization were investigated in representative tropical soils of Yom River Basin, Thailand. Adsorption of paraquat in eight soil samples using batch equilibration techniques indicated that adsorption depended on soil characteristics, including exchangeable basic cations and iron content. Multiple regression analysis indicated significant contribution of exchangeable calcium percentage (ECP), total iron content (TFe) and exchangeable sodium percentage (ESP) to paraquat sorption (Q). ESP and TFe were significant at all adsorption stages, whereas ESP was significant only at the initial stage of paraquat adsorption. Adsorption studies using two soils representing clay and sandy loam textures showed that paraquat adsorption followed the Freundlich model, exhibiting a nonlinear sorption curve. Paraquat adsorption was higher in the clay soil compared to the sandy loam soil with Kf values of 787 and 18, respectively. Desorption was low with 0.04 to 0.17% and 0.80 to 5.83% desorbed in clay and sandy loam soil, respectively, indicating some hysteresis effect. Time-dependent paraquat adsorption fitted to the Elovich kinetic model indicated that diffusion was a rate-limiting process. Paraquat mobility and degradation studies conducted using both field and laboratory soil column experiments with clay soil showed low mobility of paraquat with accumulation only in the surface 0-5 cm layer under field conditions and in the 0-1 cm layer in a laboratory soil column experiment. Degradation of paraquat in soil was faster under field conditions than at ambient laboratory conditions. The degradation rate followed a first-order kinetic model with the DT50 at 36-46 days and DT90 around 119-152 days.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号