首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
废物处理   4篇
环保管理   1篇
综合类   2篇
基础理论   2篇
污染及防治   10篇
评价与监测   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1980年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
1.
Fahmi  Nishijima W  Okada M 《Chemosphere》2003,50(8):1043-1048
The single and multi-stages advanced oxidation process (AOP)-biological treatments were evaluated to apply for drinking water treatment, especially for the water containing less susceptible dissolved organic carbon (DOC) to ozone, comparing with the ozonation-biological treatment. Minaga reservoir water and the secondary effluent from a Municipal wastewater treatment plant were used as dissolved organic matter (DOM) solutions. DOC removals after 60 min AOP-biological treatment were 62% and 41% in the Minaga reservoir water and the secondary effluent, respectively, whereas those in the ozonation-biological treatment only 40% and 15% of DOC were removed, respectively. The result indicated that the single-stage AOP-biological treatment could improve DOC removal in comparison with the single-stage ozonation-biological treatment. This is because the AOP mineralized both biodegradable dissolved organic carbon (BDOC) produced in the early stage of oxidation and non-biodegradable dissolved organic carbon (NBDOC), whereas only BDOC was mineralized by further ozonation and NBDOC was not oxidized in the ozonation-biological treatment. The multi-stage treatment could not improve DOC removal in comparison with the single-stage treatment in the ozonation-biological treatment for the secondary effluent containing less susceptible DOC to ozone. However, the multi-stage AOP-biological treatment significantly reduced DOC and achieved 71% of DOC removal by 4 times repetition of 15 min oxidation, whereas DOC removal was 41% in the single-stage AOP-biological treatment for the same oxidation time. The improvement of DOC removal by the multi-stage AOP-biological treatment was due to BDOC removal as a radical scavenger by subsequent biological treatment in the early stage of oxidation and direct mineralization in the latter stage of oxidation.  相似文献   
2.
The recognition of agroforestry as a greenhouse-gas mitigation strategy under the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) offers an opportunity to agroforestry practitioners to benefit from the global Carbon (C) credit market. Our knowledge on this important topic from the semiarid regions such as the West African Sahel (WAS) is, however, very limited. In order to fill this gap, this study was undertaken in the Ségou region of Mali (annual temperature, 29°C; annual rainfall, 300–700 mm in 60 to 90 days), focusing on two improved agroforestry systems (live fence and fodder bank) along with traditional parkland agroforestry systems of the region. A cost–benefit analysis was conducted to assess the economic profitability and risks associated with the systems considering them as 25-year projects and their potential for participation in C credit market. The traditional systems had high C stock in their biomass and soil, but little potential for sequestering additional C; on the other hand, the improved systems had low C stock, but high sequestration potential. For the standard size live fence (291 m) and fodder bank (0.25 ha) projects, the estimated net present values (NPV) were $ 96.0 and $158.8 without C credit sale, and $109.9 and $179.3 with C sale, respectively. From the C sale perspective, live fence seemed less risky and more profitable than fodder bank. Carbon credit sale is likely to contribute to economic development of the subsistence farmers in the WAS.
Asako TakimotoEmail:
  相似文献   
3.
Tsai TY  Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1151-1155
The effects of chemical characteristics of organic solvents on the decomposition rate constants of undissociative trichloroethylene (TCE) and dissociative 2,4-dichlorophenol (2,4-DCP) by ozonation were studied. The TCE and 2,4-DCP decomposition by ozonation in organic solvents followed to the first-order reaction kinetics with respect to TCE or 2,4-DCP concentration. The orders of the rate constants among organic solvents for undissociative TCE and dissociative 2,4-DCP were different indicating that the ozonation rates for undissociative and dissociative compounds were dependent on the chemical property of organic solvent. The decomposition of undissociative TCE by ozonation was a simple electrophilic reaction, which was dependent on acceptor number (AN) of the solvent. On the other hand, the decomposition of dissociative 2,4-DCP was dependent on by the dissociation of the compounds and would be dependent on donor number (DN) of the solvent. Finally, TCE in acetic acid was transformed to chlorinated intermediates and chloride ion and then these intermediates were continuously oxidized to chlorine gas.  相似文献   
4.
This study describes the possible separation of chlorinated plastic films (PVC and PVDC) from other heavy plastic packaging waste (PPW) by selective twist formation and gravity separation. Twists formation was mechanically induced in chlorinated plastic films, whereas twist formation did not occur in PS and PET films. After twist formation, all the films had the apparent density of less than 1.0 g/cm3 and floated in water even though the true density was more than 1.0 g/cm3. However, the apparent density of the PS and the PET films increased with agitation to more than 1.0 g/cm3, whereas that of chlorinated plastic films was kept less than 1.0 g/cm3. The main reason would be the air being held inside the chlorinated plastic films which was difficult to be removed by agitation. Simple gravity separation after twist formation was applied for artificial film with 10 wt.% of the chlorinated films and real PPW films with 9 wt.% of the chlorinated films. About 76 wt.% of the artificial PPW films and 75 wt.% of real PPW films after the removal of PP and PE were recovered as settling fraction with 4.7 wt.% and 3.0 wt.% of chlorinated plastic films, respectively. These results indicate that simple gravity separation process after twist formation can be used to reduce the chlorinated plastic concentration from mixed heavy PPW films.  相似文献   
5.
Techniques for enhancing the biodegradation of oil-contaminated fine soils in a slurry-phase bioreactor were investigated. Using a model system consisting of kaolin particles containing adsorbed n-dodecane as a diesel fuel surrogate, we investigated how increasing the temperature and adding a surfactant and various hydrophobic support media affected the biodegradation rate of n-dodecane. Increasing the temperature from 25 to 35 degrees C decreased the time required for complete degradation of n-dodecane by 30%, from 110h to 80h. Addition of the surfactant polyethylene glycol p-1,1,3,3-tetramethylbutylphenyl ether decreased the degradation time to less than 48h at 35 degrees C, although a high concentration of the surfactant (3000mgl(-1)) was required. We suspect that the surfactant increased the degradation rate by solubilizing the n-dodecane into the solution phase in which the microorganisms were suspended. We tested five types of organic polymers as support media for the microorganisms and found that the biodegradation time could be reduced by approximately 50% with a support medium made from polyurethane; in the presence of this medium, only 36h was required for complete decomposition at 35 degrees C. The reduction in the degradation time was probably due to transfer of the n-dodecane from the soil to the support medium, which improved contact between the n-dodecane and the microorganisms. The polyurethane support medium bearing the microorganisms was stable and could be reused.  相似文献   
6.
The adsorption and desorption characteristics of BDOC produced by ozonation and the replacement of BDOC by non-BDOC on BAC was studied. The fate of BDOC produced by ozonation in the BAC column was also evaluated by comparative experiment between the BAC supplied with the mixture of BDOC and non-BDOC and the BAC supplied only with non-BDOC. Fulvic acids extracted from two river sediments and one forest soil were used. BDOC produced by ozonation showed the same or lower adsorption capacity than non-BDOC after biodegradation. The adsorption rate of BDOC on GAC was lower than that of non-BDOC. BDOC produced by ozonation had low desorbability and majority of BDOC produced were not replaced by non-BDOC. BDOC in the ozonated fulvic acid did not affect the breakthrough of the ozonated fulvic acid on GAC in the early stage of adsorption, suggesting that most of BDOC were biodegraded on the surface of GAC before adsorption. Therefore, the production of BDOC by ozonation before the GAC treatment is very effective for the extension of GAC service life and the reduction of DOC loading to GAC.  相似文献   
7.
The young leaves of Clethra barbinervis Sieb. et Zucc, which is a deciduous tree species found in secondary forests widely in Japan, are used in spring as a local traditional food by local populations, and the bark of this plant is also preferred by sika deer, Cervus nippon. However, C. barbinervis has been known to accumulate heavy metals in its leaves. Then, we aimed to clarify the characteristics of microelement contents in C. barbinervis and to discuss the value of this species as food for humans and animals through the analysis of seasonal changes and distribution in various organs of C. barbinervis growing under two different geological conditions. We found that C. barbinervis is an accumulating and tolerant plant for Ni, Co and Mn. It accumulates Ni from serpentine soil containing Ni at high concentration, and Co and Mn from acidic soils based on crystalline schist. The seasonal variation in element concentrations in leaves indicates that the young leaves contain Cu at high concentration and that eating them in spring season may be advantageous to humans, due to the associated increase in Cu intake. The high concentrations of Cu and Zn in the bark of C. barbinervis might explain why deer prefer to eat the bark of this species.  相似文献   
8.
Selective surface modification of polyvinyl chloride (PVC) by ozonation was evaluated to facilitate the separation of PVC from other heavy plastics with almost the same density as PVC, especially polyethylene terephthalate (PET), by the froth flotation process. The optimum froth flotation conditions were investigated, and it was found that at 40°C, 90% of PVC and PET plastics floated. The bubble size became larger and the area covered with bubbles on the plastic surface was reduced with increasing temperature. Optimum PVC separation was achieved with the flotation solution at 40°C and mixing at 180–200 rpm, even for sheet samples 10 mm in size. Combined treatment by ozonation and froth flotation is a simple, effective, and inexpensive method for PVC separation from waste plastics.  相似文献   
9.
This study aims to study the distribution of contaminants in rivers that flow into the Caribbean Sea using chlorophyll-a (Chl-a) and suspended sediment (SS) as markers and ALOS AVNIR-2 satellite sensor data. The Haina River (HN) and Ozama and Isabela Rivers (OZ-IS) that flow through the city of Santo Domingo, the capital of the Dominican Republic, were chosen. First, in situ spectral reflectance/Chl-a and SS datasets obtained from these rivers were acquired in March 2011 (case A: with no rain influence) and June 2011 (case B: with rain influence), and the estimation algorithm of Chl-a and SS using AVNIR-2 data was developed from the datasets. Moreover, the developed algorithm was applied to AVNIR-2 data in November 2010 for case A and August 2010 for case B. Results revealed that for Chl-a and SS estimations under cases A and B conditions, the reflectance ratio of AVNIR-2 band 4 and band 3 (AV4/AV3) and the reflectance of AVNIR-2 band 4 (AV4) were effective. The Chl-a and SS mapping results obtained using AVNIR-2 data corresponded with the field survey results. Finally, an outline of the distribution of contaminants at the mouth of the river that flows into the Caribbean Sea was obtained for both rivers in cases A and B.  相似文献   
10.
The objectives of this study were to evaluate the performance of powdered activated carbon treatment (PACT) process based on the adsorption capacity of powdered activated carbon (PAC) in activated sludge and the effect of dissolved organic substances in activated sludge on the adsorption capacity of PAC. The DCP adsorption capacity of three PACs originated from different raw materials (coal, soft coal and sawdust) in activated sludge were 29%, 34% and 17% of that of new PAC, respectively. The performance of PACT process for shock loading of 3,5-dichlorophenol (3,5-DCP) was different among PACs in spite of the same adsorption capacity in new PAC. The performance of PACT process for removal of DCP is dependent not on the adsorption capacity of new PAC but on the adsorption capacity of PAC in the aeration tank. Dissolved organic matter (DOM) with molecular weight smaller than 50kDa did not affect the adsorption capacity of PAC for 3,5-DCP in the activated sludge reactor. DOM with molecular weight larger than 50kDa and biofilm developed on the surface of PAC seemed to be responsible for the decreased adsorption capacity of PAC for the DCP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号