首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
废物处理   5篇
环保管理   2篇
基础理论   1篇
污染及防治   1篇
评价与监测   5篇
  2008年   1篇
  2006年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1996年   2篇
  1994年   2篇
  1990年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between (12)CH(4), (13)CH(4), and (12)CH(3)D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7vol% in the concentration and a RMSD of 0.8 per thousand in the delta(13)C value, with delta(13)C the relative (13)C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods.  相似文献   
2.
Ammonia (NH(3)) emissions from animal systems have become a primary concern for all of livestock production. The purpose of this research was to establish the relationship of nitrogen (N) emissions to specific components of swine production systems and to determine accurate NH(3) emission factors appropriate for the regional climate, geography, and production systems. Micrometeorological instrumentation and gas sensors were placed over two lagoons in North Carolina during 1997-1999 to obtain information for determining ammonia emissions over extended periods and without interfering with the surrounding climate. Ammonia emissions varied diurnally and seasonally and were related to lagoon ammonium concentration, acidity, temperature, and wind turbulence. Conversion of significant quantities of ammonium NH(4)(+) to dinitrogen gas (N(2)) were measured in all lagoons with the emission rate largely dependent on NH(4)(+) concentration. Lagoon NH(4)(+) conversion to N(2) accounted for the largest loss component of the N entering the farm (43% as N(2)); however, small amounts of N(2)O were emitted from the lagoon (0.1%) and from field applications (0.05%) when effluent was applied nearby. In disagreement with previous and current estimates of NH(3) emissions from confined animal feeding operation (CAFO) systems, and invalidating current assumptions that most or all emissions are in the form of NH(3), we found much smaller NH(3) emissions from animal housing (7%), lagoons (8%), and fields (2%) using independent measurements of N transformation and transport. Nitrogen input and output in the production system were evaluated, and 95% of input N was accounted for as output N from the system.  相似文献   
3.
Chemo-denitrification of nitrate-polluted water   总被引:1,自引:0,他引:1  
Nitrate-nitrogen reduction was studied in the presence of ferrous iron and a copper catalyst. In a batch system, it was found that the reduction was very fast at pH 8.1 and slow at pH 7.5. A temporary accumulation of nitrate and hydroxylamine was noted. It was found that the reduction of nitrite-nitrogen in the presence of ferrous iron partly continued to ammonium. Decreasing the amount of reagents led to a slower reduction rate but a lower accumulation of nitrite and hydroxylamine. A continuous system was described whereby more than 50% of the initial nitrate could be removed.  相似文献   
4.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   
5.
Microbial biomass in a soil amended with different types of organic wastes.   总被引:1,自引:0,他引:1  
Application of different types of organic wastes may have a marked effect on soil microbial biomass and its activity. The objective of this study was to quantify the amount of microbial biomass in a loamy-clayey soil, amended with different types of organic waste residues (composts of municipal solid waste of different ages, sewage sludge and farmyard manure) and incubated for 8 weeks at 25 degrees C and two-thirds of field capacity, using the fumigation-extraction method. Both microbial biomass-C and -N (BC and BN, respectively) appeared to be dependent on the type of organic waste residues, on their degree of stability, and on their chemical characteristics. In general, organic wastes increased the microbial biomass-C content in the soil and the microbial BC was positively correlated with the organic C content, the C/N, neutral detergent fibre/N (NDF/N) and acid detergent fibre/N (ADF/ N) ratios. The microbial biomass content decreased according to the period of incubation, especially when the compost used was immature. The microbial biomass-N was positively correlated with the total N and percentage of hemicellulose. The microbial biomass-C was linearly related with the microbial biomass-N and the ratio BC/BN was exponentially related with the BC.  相似文献   
6.
7.
The NO, NO2 and N2O emission was measured, upon application of nitrate, ammonium and both, to four Belgian soils with different characteristics. The addition of NH 4 + caused higher NO and N2O emissions than the addition of no nitrogen, or the addition of NO 3 . In contrast to the two soils with a pH of approximately 8 the two soils with a pH around 6 showed a considerable delay in production of both NO and N2O upon the application of the ammonium, probably due to the lag-period of nitrification. The soils with a pH of 8 gave higher emissions on the application of NH 4 + than the soils with a pH of 6. The emission of NO2 was found to be considerably lower than the NO emission from the soils. The NO/NO2 ratio varied between 5–25 at considerable NO emissions (>50 nmol kg–1). In the controls of soil 1 and soil 2, which showed very low NO emissions ratios of <1 were observed. The N2O/NO ratios varied between 5–20 when NO emissions were considerable (>50 nmol kg–1). Soil 3 and 4 gave lower N2O/NO ratios than soil 1 and 2. In the controls of soil 1 and soil 2, at low NO emissions, N2O/NO ratios of >300 were observed. Soil 3 and 4 gave higher NO/NO2 and lower N2O/NO ratios than soil 1 and 2.  相似文献   
8.
Grazed grassland which received 295 kg ha–1 N-fertilizer (NH4NO3), split-applied, was used to measure nitrous oxide emission. The closed box method was used. At the same time, also soil cores were taken for incubation in the presence of acetylene. During 280 days in 1992, a total emission of 8.4 kg N2O-N ha–1 was found. This was close to 50 % of the total denitrification, which was 18.7 kg (N2O+N2)-N ha–1 over 280 days. A variability study on N2O emission was carried out on a surface of 1, 100 and 10,000 m2, respectively. This study confirmed the lognormal distribution of data with variation coefficients of 20 to 25%. It was also found that the effect of application of 200 kg KNO3-N on N2O emission was limited to 2 weeks upon fertilization. It more than doubled the emission rate during this period.  相似文献   
9.
OLAND生物脱氮系统运行及其硝化菌群的分子生物学检测   总被引:5,自引:0,他引:5  
采用两阶段限氧自养硝化 -反硝化生物脱氮系统 (oxygen limitedautotrophicnitrificationanddenitrificationsystem ,以下简称OLAND)处理高氨氮、低COD的废水 .应用内浸式多聚醚砜中空膜 ,实现了污泥的完全截留 ,阻止了生物量的大量洗脱 ,并通过控制溶氧在 0 .1~ 0 .3mgL-1之间 ,实现了硝化阶段出水中氨氮与亚硝态氮浓度的比例达到最适值〔1 (1.2± 0 .2 )〕 ,从而为第二阶段的厌氧氨氧化提供理想的进水 ,进而获得较高的脱氮率 .同时应用荧光原位杂交技术对硝化阶段不同时期硝化菌群的变化进行分子生物学检测 ,揭示了随溶氧浓度的降低 ,氨氧化菌的数量基本保持恒定、亚硝酸氧化菌的数量略有减少的变化规律 ,并且发现 ,在两阶段限氧自养硝化 -反硝化生物脱氮系统中氨氮的氧化主要是由Nitrosomonassp .完成 ,亚硝酸的氧化主要由Nitrobactersp .完成 .图 4表 2参 2 2  相似文献   
10.
Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH(4) and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH(4) can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH(4) was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH(4) oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 degrees C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号