首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
废物处理   1篇
环保管理   1篇
综合类   1篇
基础理论   1篇
污染及防治   9篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2014年   9篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
In aquatic environments, polycyclic aromatic hydrocarbons (PAHs) mostly occur as complex mixtures, for which risk assessment remains problematic. To better understand the effects of PAH mixture toxicity on fish early life stages, this study compared the developmental toxicity of three PAH complex mixtures. These mixtures were extracted from a PAH-contaminated sediment (Seine estuary, France) and two oils (Arabian Light and Erika). For each fraction, artificial sediment was spiked at three different environmental concentrations roughly equivalent to 0.5, 4, and 10 μg total PAH g?1 dw. Japanese medaka embryos were incubated on these PAH-spiked sediments throughout their development, right up until hatching. Several endpoints were recorded at different developmental stages, including acute endpoints, morphological abnormalities, larvae locomotion, and genotoxicity (comet and micronucleus assays). The three PAH fractions delayed hatching, induced developmental abnormalities, disrupted larvae swimming activity, and damaged DNA at environmental concentrations. Differences in toxicity levels, likely related to differences in PAH proportions, were highlighted between fractions. The Arabian Light and Erika petrogenic fractions, containing a high proportion of alkylated PAHs and low molecular weight PAHs, were more toxic to Japanese medaka early life stages than the pyrolytic fraction. This was not supported by the toxic equivalency approach, which appeared unsuitable for assessing the toxicity of the three PAH fractions to fish early life stages. This study highlights the potential risks posed by environmental mixtures of alkylated and low molecular weight PAHs to early stages of fish development.  相似文献   
2.
Due to hydrophobic and persistent properties, polycyclic aromatic hydrocarbons (PAHs) have a high capacity to accumulate in sediment. Sediment quality criteria, for the assessment of habitat quality and risk for aquatic life, include understanding the fate and effects of PAHs. In the context of European regulation (REACH and Water Framework Directive), the first objective was to assess the influence of sediment composition on the toxicity of two model PAHs, benzo[a]pyrene and fluoranthene using 10-day zebrafish embryo-larval assay. This procedure was undertaken with an artificial sediment in order to limit natural sediment variability. A suitable sediment composition might be then validated for zebrafish and proposed in a new OECD guideline for chemicals testing. Second, a comparative study of toxicity responses from this exposure protocol was then performed using another OECD species, the Japanese medaka. The potential toxicity of both PAHs was assessed through lethal (e.g., survival, hatching success) and sublethal endpoints (e.g., abnormalities, PMR, and EROD) measured at different developmental stages, adapted to the embryonic development time of both species. Regarding effects observed for both species, a suitable artificial sediment composition for PAH toxicity testing was set at 92.5 % dry weight (dw) silica of 0.2–0.5-mm grain size, 5 % dw kaolin clay without organic matter for zebrafish, and 2.5 % dw blond peat in more only for Japanese medaka. PAH bioavailability and toxicity were highly dependent on the fraction of organic matter in sediment and of the K ow coefficients of the tested compounds. The biological responses observed were also dependent of the species under consideration. Japanese medaka embryos appeared more robust than zebrafish embryos for understanding the toxicity of PAHs following a sediment contact test, due to the longer exposure duration and lower sensitivity of sediment physical properties.  相似文献   
3.
4.
5.

The electric power grid is a critical societal resource connecting multiple infrastructural domains such as agriculture, transportation, and manufacturing. The electrical grid as an infrastructure is shaped by human activity and public policy in terms of demand and supply requirements. Further, the grid is subject to changes and stresses due to diverse factors including solar weather, climate, hydrology, and ecology. The emerging interconnected and complex network dependencies make such interactions increasingly dynamic, posing novel risks, and presenting new challenges to manage the coupled human–natural system. This paper provides a survey of models and methods that seek to explore the significant interconnected impact of the electric power grid and interdependent domains. We also provide relevant critical risk indicators (CRIs) across diverse domains that may be used to assess risks to electric grid reliability, including climate, ecology, hydrology, finance, space weather, and agriculture. We discuss the convergence of indicators from individual domains to explore possible systemic risk, i.e., holistic risk arising from cross-domain interconnections. Further, we propose a compositional approach to risk assessment that incorporates diverse domain expertise and information, data science, and computer science to identify domain-specific CRIs and their union in systemic risk indicators. Our study provides an important first step towards data-driven analysis and predictive modeling of risks in interconnected human–natural systems.

  相似文献   
6.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that can be present at high levels as mixtures in polluted aquatic environments. Many PAHs are potent mutagens and several are well-known carcinogens. Despite numerous studies on individual compounds, little is known about the toxicity of PAHs mixtures that are encountered in environmental situations. In the present work, zebrafish were continuously fed from 5 days post-fertilisation to 14 months post-fertilisation (mpf) with a diet spiked with fractions of either pyrolytic (PY), petrogenic light oil (LO), or petrogenic heavy oil (HO) origin at three concentrations. A decrease in survival was identified after 3 mpf in fish fed with the highest concentration of HO or LO, but not for PY. All PAH fractions caused preneoplastic and neoplastic disorders in long-term-exposed animals. Target tissues were almost exclusively of epithelial origin, with the bile duct epithelium being the most susceptible to chronic exposure to all PAH fractions, and with germ cells being the second most responsive cells. Significantly higher incidences of neoplasms were observed with increasing PAH concentration and exposure duration. The most severe carcinogenic effects were induced by dietary exposure to HO compared to exposure to LO or PY (45, 30 and 7 %, respectively, after 9 to 10 months of exposure to an intermediate concentration of PAHs). In contrast, earliest carcinogenic effects were detected as soon as 3 mpf after exposure to LO, including the lowest concentration, or to PY. PAH bioactivation and genotoxicity in blood was assessed by ethoxyresorufin-O-deethylase activity quantification and comet and micronuclei assays, respectively, but none of these were positive. Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenotoxic events that impair survival and physiology of exposed fish.  相似文献   
7.
In the last 10 years, behavior assessment has been developed as an indicator of neurotoxicity and an integrated indicator of physiological disruption. Polycyclic aromatic hydrocarbon (PAH) release into the environment has increased in recent decades resulting in high concentrations of these compounds in the sediment of contaminated areas. We evaluated the behavioral consequences of long-term chronic exposure to PAHs, by exposing zebrafish to diets spiked with three PAH fractions at environmentally relevant concentrations. Fish were exposed to these chemicals from their first meal (5 days postfertilization) until they became reproducing adults (at 6 months old). The fractions used were representative of PAHs of pyrolytic (PY) origin and of two oils differing in composition (a heavy fuel oil (HO) and a light crude oil (LO)). Several tests were carried out to evaluate circadian spontaneous swimming activity, responses to a challenge (photomotor response), exploratory tendencies, and anxiety levels. We found that dietary PAH exposure was associated with greater mobility, lower levels of exploratory activity, and higher levels of anxiety, particularly in fish exposed to the HO fraction and, to a lesser extent, the LO fraction. Finally, our results indicate that PAH mixtures of different compositions, representative of situations encountered in the wild, can induce behavioral disruptions resulting in poorer fish performance.  相似文献   
8.
A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g?1 sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic?Arabian Light?Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g?1 sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.  相似文献   
9.
A natural sediment spiked with three individual polycyclic aromatic hydrocarbons (PAHs; pyrene, phenanthrene and benzo[a]pyrene) was used to expose zebrafish embryos and larvae during 4 days. The total PAH concentration was 4.4 μg g?1 which is in the range found in sediment from contaminated areas. Quantification of metabolites in the larvae after exposure confirmed the actual contamination of the larvae and indicated an active metabolism especially for pyrene and benzo[a]pyrene. After a transfer in a clean medium, the larvae were reared to adulthood and evaluated for survival, growth, reproduction, and behavior. Measured endpoints revealed a late disruption of growth (appearing at 5 months) and a trend toward a lower reproductive ability. Adults of embryos exposed to sediment spiked with PAHs displayed lethargic and/or anxiety-like behaviors. This latter behavior was also identified in offspring at larval stage. All together, these effects could have detrimental consequences on fish performances and contribution to recruitment.  相似文献   
10.
Most persistent organic pollutants, due to their hydrophobic properties, accumulate in aquatic sediments and represent a high risk for sediment quality. To assess the toxicity of hydrophobic pollutants, a novel approach was recently proposed as an alternative to replace, refine and reduce animal experimentation: the medaka embryo–larval sediment contact assay (MELAc). This assay is performed with Japanese medaka embryos incubated on a natural sediment spiked with the compound being tested. With the aim of improving this assay, our study developed a reference exposure protocol with an artificial sediment specifically designed to limit natural sediment composition uncertainties and preparation variability. The optimum composition of the new artificial sediment was tested using a model polycyclic aromatic hydrocarbon (PAH), fluoranthene. The sediment was then validated with two other model PAHs, benz[a]anthracene and benzo[a]pyrene. Various developmental end points were recorded, including survival, embryonic heartbeat, hatching delay, hatching success, larval biometry and abnormalities. The final artificial sediment composition was set at 2.5 % dry weight (dw) Sphagnum peat, 5 % dw kaolin clay and 92.5 % dw silica of 0.2- to 0.5-mm grain size. In contrast with natural sediments, the chemical components of this artificial matrix are fully defined and readily identifiable. It is totally safe for fish embryos and presents relatively high sorption capacities for hydrophobic compounds. Studies with other hydrophobic and metallic contaminants and mixtures should be performed to further validate this artificial sediment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号