首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   1篇
废物处理   2篇
环保管理   1篇
综合类   6篇
基础理论   4篇
污染及防治   6篇
评价与监测   1篇
社会与环境   1篇
  2022年   3篇
  2021年   1篇
  2016年   2篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
  1994年   2篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   
2.
We make an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios. According to the model projections, 39% of forest grids are likely to undergo vegetation type change under the A2 scenario and 34% under the B2 scenario by the end of this century. However, in many forest dominant states such as Chattisgarh, Karnataka and Andhra Pradesh up to 73%, 67% and 62% of forested grids are projected to undergo change. Net Primary Productivity (NPP) is projected to increase by 68.8% and 51.2% under the A2 and B2 scenarios, respectively, and soil organic carbon (SOC) by 37.5% for A2 and 30.2% for B2 scenario. Based on the dynamic global vegetation modeling, we present a forest vulnerability index for India which is based on the observed datasets of forest density, forest biodiversity as well as model predicted vegetation type shift estimates for forested grids. The vulnerability index suggests that upper Himalayas, northern and central parts of Western Ghats and parts of central India are most vulnerable to projected impacts of climate change, while Northeastern forests are more resilient. Thus our study points to the need for developing and implementing adaptation strategies to reduce vulnerability of forests to projected climate change.  相似文献   
3.
4.
5.
Universities have long borne an influential role in sustainability. Nonetheless, the affinity toward eclectic and piecemeal practices has been addressed as oxymoron to the essence of sustainable development, and the need to hone campus members’ buy-in is credited to be cardinal for systemic transformation. Major attributes for systemic campus sustainability are identified, incorporated, and proposed via a conceptual model. Those attributes are key sustainable development areas as well as perception and motivation on the topics that must be taken into consideration by universities to be able to adhere to a more pragmatic and inclusive sustainable development. Thus, the central intent of the authors is to offer a mechanism which may facilitate as well as elevate systemic campus sustainability. An extensive review of the literature in the area of sustainability, perception, and motivation is conducted, which includes articles, journals, conference proceedings, university reports, books, and materials from websites. By extracting and integrating crucial constituents of sustainable development from various studies, this paper contributes to the existing literature on sustainable development providing an input to the implementation of systemic campus sustainability.  相似文献   
6.
Budget-Balancing Incentive Mechanisms   总被引:5,自引:0,他引:5  
A. P. Xepapadeas [J. Environ. Econom. Management20, 113-26, 1991] developed a pollution abatement incentive mechanism that both reduces the information requirements of a regulator and is "budget-balancing," drawing only on the social gains from pollution abatement to encourage firm compliance. This paper demonstrates that, contrary to Xepapadeas, the budget-balancing system of random penalties cannot be used to induce compliance with the regulator′s objectives if firms are risk neutral. However, the mechanism can be successfully applied if firms are sufficiently risk averse [E. Rasmusen, RAND J. Econom.18, 428-435, 1987].  相似文献   
7.
Plant height, biomass production, assimilatory functions and chlorophyll accumulation of Panicum maximum and Stylosanthes hamata in intercropping systems was influenced significantly under elevated CO2 (600 +/- 50 ppm) in open top chambers (OTCs). The plant height increased by 32.0 and 49.0% over the control in P. maximum and S. hamata respectively in intercropping system under elevated CO2 over open field grown crops (Ca). P. maximum and S. hamata produced 67 and 85% higher fresh and dry biomass respectively under elevated CO2. Rates of photosynthesis and stomatal conductance increased in both the crop species in intercropping systems under elevated CO2. The canopy photosynthesis (photosynthesis x leaf area index) of these crop species increased significantly under elevated CO2 over the open grown crops. The chlorophyll a and b accumulation were also higher in the leaves of both the crop species as grown in OTC with elevated CO2. The increased chlorophyll content, leaf area index and canopy photosynthesis led to higher growth and biomass production in these crop species under elevated CO2. The total carbon sequestration in crop biomass and soils during the three years was 21.53 Mg C/ha under elevated CO2. The data revealed that P. maximum and S. hamata intercropping system is the potential as a sink for the increasing level of CO2 in the atmosphere in the semi-arid tropics.  相似文献   
8.
Consortia were developed for the treatment of corncobs for use as a feedstock in a biogas fermentor. The treatment of corncobs with xylanolytic consortia enhanced the production of methane and biogas. All five consortia developed produced the maximum biogas and methane at a 6% loading rate and 20 days hydraulic retention time (HRT). The maximum biogas yield of 0.59m3/kg volatile solids (VS) with a methane content of 62% was produced with the KK-10 consortium. This was apparently due to a maximum hemicellulose degradation of 88%.  相似文献   
9.
Ray S  Kim KH  Yoon HO 《Chemosphere》2012,87(5):557-565
As a basic means to control odorants released from a landfill leachate treatment station (LLTS), effluents venting from this station were treated via incineration with methane rich landfill gas (at 750 °C). A list of the key offensive odorants covering 22 chemicals was measured by collecting those gas samples both before and after the treatment. Upon incineration, the concentration levels of most odorants decreased drastically below threshold levels. The sum of odorant intensities (SOIs), if compared between before and after incineration, decreased from 6.94 (intolerable level) to 3.45 (distinct level). The results indicate that the thermal incineration method can be used as a highly efficient tool to remove most common odorants (e.g., reduced sulfur species), while it is not so for certain volatile species (e.g., carbonyls, fatty acids, etc.).  相似文献   
10.
Environmental Science and Pollution Research - Organopesticides (OPs) are a group of various synthetic chemicals prevalently used in agriculture and homestead plantations. OPs were originally...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号