首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   4篇
污染及防治   3篇
  2018年   1篇
  2012年   1篇
  2011年   3篇
  1998年   1篇
  1989年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Eom H  Chung K  Kim I  Han JI 《Chemosphere》2011,85(4):672-676
In an effort to improve the efficiency and sustainability of microbial fuel cell (MFC) technology, a novel MFC reactor, the M2FC, was constructed by combining a ferric-based MFC with a ferrous-based fuel cell (FC). In this M2FC reactor, ferric ion, the catholyte in the MFC component, is regenerated by the FC system with the generation of additional electricity. When the MFC component was operated separately, the electricity generation was maintained for only 98 h due to the depletion of ferric ion in the catholyte. In combination with the fuel cell, however, the production of power was sustained because ferric ion was continually replenished from ferrous ion in the FC component. Moreover, the regeneration process of ferric ion by the FC produced additional energy. The M2FC reactor yielded a power density of up to 2 W m−2 (or time-averaged value of approximately 650 mW m−2), density up to 20 times (or approximately six times based on time-averaged value) higher than the corresponding MFC system.  相似文献   
2.
A novel type of fluidized bed desorber was developed for the remediation of petroleum-contaminated soils at low temperature with high efficiency. Cahn balance® was utilized to investigate the thermal desorption behavior of soils contaminated by various hydrocarbons. The performance of the fluidized-bed desorber was investigated at different operating modes. Batch operation of the fluidized-bed desorber exhibited 99.9% desorption efficiency at temperatures of ca. 300°C within a half hour. Continuous operation of the fluidized-bed indicated that Q/F (the ratio of the mass flow rate of fluidizing gas to feeding rate of contaminated soils) is less important at higher temperature (>300°C), if proper fluidization is ensured. The periodic operation of the fluidized bed desorber shows the possibility to reduce off-gas volume significantly.  相似文献   
3.
Solid-fuel conversion or gasification study of sewage sludge and energy recovery has become increasingly important because energy recovery and climate change are emerging issues. Various types of catalysts, such as dolomite, steel slag and calcium oxide, were tested for tar reduction during the sewage sludge gasification process. For the experiments on sewage sludge gasification reactions and tar reduction using the catalysts, a fixed bed of laboratory-scale experimental apparatus was set up. The reactor was made of quartz glass using an electric muffle furnace. The sewage sludge samples used had moisture contents less than 6%. The experimental conditions were as follows: sample weight was 20 g and reaction time was 10 min, gasification reaction temperature was from 600 to 800°C, and the equivalence ratio was 0.2. The quantity of catalysts was 2–6 g, and temperatures of catalyst layers were 500–700°C. As the reaction temperature increased up to 800°C, the yields of gaseous products and liquid products increased, whereas char and tar products decreased, showing effects on gas product compositions. These results were considered to be due to the increase of the water-gas reaction and Boudouard reaction. In the case of experiments with catalysts, dolomite (4 g), steel slag (6 g) and calcium oxide (6 g) were used. When the temperature of catalysts increased, the weight of the tar produced decreased with different cracking performances by different catalysts. Reforming reactions were considered to occur on the surface of dolomite, steel slag and calcium oxide, causing cracking of the hydrocarbon structure, which eventually showed reduced tar generation.  相似文献   
4.
Journal of Material Cycles and Waste Management - Although waste-to-energy (WtE) may reduce the amount of waste disposed and recover the heat in the form of electricity or steam, it has limitations...  相似文献   
5.
Various research has attempted to determine the proper treatment of sewage sludge, including thermal technologies. Efficient thermal technologies have been focused on because of their energy saving/energy recovery. Gasification technology can be considered one of these approaches. In this study, the characteristics of gasification reactions were investigated with the aim of finding fundamental data for utilizing sewage sludge as an energy source. For the experiments on sewage sludge gasification reaction characteristics, a laboratory-scale experimental apparatus was set up with a fluidizing bed reactor of 70-mm inner diameter and 600-mm total height using an electric muffle furnace. The experimental materials were prepared from a sewage treatment plant located in Seoul. The reaction temperature was varied from 630 to 860°C, and the equivalence ratio from 0.1 to 0.3. The gas yields, compositions of product gas, and cold gas efficiencies of product gas were analyzed by GC/TCD and GC/FID installed with a carboxen-1000 column. The experimental results indicated that 800°C, ER 0.2 was an optimum condition for sewage sludge gasification. The maximum yield of product gas was about 44%. Producer gas from experiments was mainly composed of hydrogen, carbon monoxide, carbon dioxide, and methane. The cold gas efficiency of sewage sludge gasification was about 68%. The H2/CO ratio and CO/CO2 ratio were about 1.1 and 1.4, respectively, in optimum reaction conditions. Gaseous pollutants such as SO2, HCl, NH3, H2S, and NO2 were also analyzed at various gasification/combustion conditions, and their gaseous products were compared, showing significantly different oxidized product distributions.  相似文献   
6.
Results of this study showed that the use of a radiant-type kerosene heater or a poorly-vented wood-burning fireplace resulted in substantial increases (up to 10 times background) of benzo(a)pyrene levels (on airborne particulates) in indoor environments.  相似文献   
7.
Chung K  Lee I  Han JI 《Chemosphere》2012,86(4):415-419
As an effort to better utilize the microbial fuel cell (MFC) technology, we previously proposed an innovative MFC system named M2FC consisting of ferric-based MFC part and ferrous-based fuel cell (FC) part. In this reactor, ferric ion, the catholyte in the MFC part, was efficiently regenerated by the FC part with the generation of additional electricity. When both units were operated separately, the ferric-based MFC part produced approximately 1360 mW m−2 of power density with FeCl3 as catholyte and Fe-citrate as anolyte. The ferrous-based FC part with FeCl3 as catholyte and Fe-EDTA as anolyte displayed the highest power density (1500 mW m−2), while that with ferricyanide as catholyte and Fe-noligand as anolyte had the lowest power density (380 mW m−2). The types of catholytes and chelating complexes as anolyte were found to play important roles in the reduction of ferric ions and oxidation of ferrous ion. Linear sweep voltammetry results supported that the cathode electrolytes were electrically active and these agreed well with the M2FC reactor performance. These results clearly showed that ligands played critical role in the efficiency and rate for recycling iron ion and thus the M2FC performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号