Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems. 相似文献
Air pollutants such as polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives (NPAHs), and some metals on airborne particles in Nagasaki city, Japan were determined over a period of 12 months by high-performance liquid chromatography with chemiluminescence, fluorescence and flameless atomic absorption spectrometry. The average concentrations (range) were 18.24 (4.07-41.54) ng/m3 for total PAHs, 0.91 (0.23-4.10) pg/m3 for NPAHs, 7.95 (1.71-16.31) ng/m3 for Pb, 11.56 (3.35-24.96) ng/m3 for Mn and 3.79 (0.97-14.71) ng/m3 for Ni (n = 136). The toxic equivalency factors adjusted concentration of total PAHs determined in Nagasaki city area was 2.33 ng/m3. Concentrations of total PAHs and NPAHs in winter were higher than those in summer. In a weekly variations study, total PAHs and NPAHs concentrations, as well as traffic volume showed a similar tendency with all values higher during weekdays and lower at the weekend. The correlation coefficients between total PAHs or NPAHs and traffic volume were 0.781 and 0.818, respectively. These results suggested that one of the main sources for NPAHs and PAHs in a city area might be motor vehicles. 相似文献
To improve nitrogen removal performance of wastewater treatment plants (WWTPs), it is essential to understand the behavior of nitrogen cycling communities, which comprise various microorganisms. This study characterized the quantity and diversity of nitrogen cycling genes in various processes of municipal WWTPs by employing two molecular-based methods:most probable number-polymerase chain reaction (MPN-PCR) and DNA microarray. MPN-PCR analysis revealed that gene quantities were not statistically different among processes, suggesting that conventional activated sludge processes (CAS) are similar to nitrogen removal processes in their ability to retain an adequate population of nitrogen cycling microorganisms. Furthermore, most processes in the WWTPs that were researched shared a pattern:the nirS and the bacterial amoA genes were more abundant than the nirK and archaeal amoA genes, respectively. DNA microarray analysis revealed that several kinds of nitrification and denitrification genes were detected in both CAS and anaerobic-oxic processes (AO), whereas limited genes were detected in nitrogen removal processes. Results of this study suggest that CAS maintains a diverse community of nitrogen cycling microorganisms; moreover, the microbial communities in nitrogen removal processes may be specific.
Until recently, scientists believed that the chemical elements were synthesized only in stars. The discovery of the Oklo phenomenon in the Republic of Gabon in 1972 has revealed, however, that a nuclear “fire” had existed on the earth and largescale transmutations of the elements were occurring on our planet 1.7·109 years ago. The formation of natural (or Pre-Fermi) reactors is closely related to the appearance of life on our planet earth. The Pre-Fermi reactors were probably never formed until about 2·109 years ago, when oxygen was injected into the earth's atmosphere by a new generation of living organisms carrying out photosynthesis. 相似文献
Polychlorinated biphenyls (PCBs) and hydroxy-PCB (OH-PCB) metabolites are widely distributed bioaccumulative environmental chemicals and have similar chemical structures to those of thyroid hormones (THs). Previously, we reported that THs are essential for neuronal development and the low doses of two OH-PCBs, namely, 4-OH-2',3,3',4',5'-pentachlorobiphenyl (4'-OH-PeCB-106) and 4-OH-2',3,3',4',5,5'-hexachlorobiphenyl (4'-OH-HxCB-159), inhibited the TH-dependent dendritic development of Purkinje cells in mouse cerebellar cultures using serum-free defined medium. To determine which type of OH-PCBs affect neuronal development, we further examined several OH-PCBs and other estrogenic chemicals using this simple and sensitive assay system. Two-way ANOVA was used to assess the effects of OH-PCBs and other chemicals on both factors of their concentrations and with/without T4 in the assay of TH-dependent dendritic development of Purkinje cells. Aside from the two OH-PCBs, 4-OH-2',3,4',5,6'-pentachlorobiphenyl (4'-OH-PeCB-121) and bisphenol A significantly inhibited the TH-dependent dendritic development of Purkinje cells, whereas 4-OH-2',3,3',5',6'-pentachlorobiphenyl (4'-OH-PeCB-112), 4-OH-2',3,3',5,5',6'-hexachlorobiphenyl (4'-OH-HxCB-165), 4-OH-2,2',3,4',5,5',6-heptachlorobiphenyl (4-OH-HpCB-187), progesterone and nonylphenol did not induce any inhibition, but significantly promoted the dendritic extension of Purkinje cells in the absence of THs. Other estrogenic chemicals, including beta-estradiol, diethyl stilbestrol and p-octylphenol did not show significant inhibitory or promoting effects. From these results, it is suggested that exposure to OH-PCBs and other environmental chemicals may disrupt normal neuronal development and cause some developmental brain disorders, such as LD, ADHD, and autism. 相似文献
Rare-earth element is an important target for recycling in Japan. In our previous work, we demonstrated the selective leaching of rare-earth elements from waste neodymium magnets using chloride molten salt electrolysis. In this study, we investigated the electrodeposition of rare-earth elements using liquid metal as a cathode. The reduction potential obtained using a liquid-zinc electrode was higher than that obtained using a solid molybdenum electrode. A zinc–rare-earth alloy was formed as the electrodeposit. The total rare-earth element content of the electrodeposit was more than 99.8 mass% without zinc and other composition of electrolysis. The activity of rare-earth elements decreased upon alloy formation, suggesting that the oxidation rate of electrodeposited alloy will be decreased. 相似文献
Rare-earth elements are used in neodymium magnets, and these elements are critical to Japanese industry. In this study, we focused on the electrochemical behavior of neodymium magnets for the recovery of rare-earth elements using molten salt electrolysis. The influence of the rare-earth elemental composition of the neodymium magnets on their anodic polarization behavior and oxidation mechanism was studied. The use of potentiostatic electrolysis enabled selective leaching of rare-earth elements from neodymium magnets in the potential range from ?1.8 to ?0.8 V. The oxidation potential limits the oxidation stage, enabling rare-earth elements to be leached from mixed neodymium magnets simultaneously. 相似文献