首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   4篇
环保管理   1篇
综合类   1篇
社会与环境   1篇
  2016年   1篇
  2009年   1篇
  2005年   1篇
  2004年   2篇
  2001年   1篇
  1992年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Dissolved nitrous oxide (N2O), nitrate (NO3 -), and ammonium (NH4 +) concentrations in an agricultural field drain were intensively measured over the period of field nitrogen (N) fertilisation and for several weeks thereafter. Supersaturations of dissolved N2O were observed in field drain waters throughout the study. On entry to an open drainage ditch, concentrations of dissolved N2O rapidly decreased and a total N2O-N emission via this pathway of 13.2 g over the period of study (45 days) was calculated. This compared with a predicted emission of the order of 300 g, based on measured losses of NO3 - and NH4 + in the field drainage water, and the default IPCC emission factor of 0.01 kg N2O-N per kg Nentering rivers and estuaries. In contrast to widespread evidence of a clear relationship between the amount of N applied to agricultural land and subsequent direct N2O emission from the soil surface, the relationship between the amount of N2O in soil drainage waters and the amount of N applied was poor. We conclude that the complexity, both spatially and temporally, of the processes ultimately responsible for the amount of N2O in agricultural drainage waters make a straightforward relationship between N2O concentration and N application rate unlikely in all but the simplest of systems.  相似文献   
2.
Methane oxidation capacity of soil from an experimentalsite in Northwest England was strongly dependent on temperatureand percentage water holding capacity. The soil had a distincttemperature optimum of 25 °C, with capacity for net methaneoxidation being completely lost below 5 and greater than37 °C. Optimum percentage water holding capacity for methaneoxidation was in the range 30–60%, with significant reductions inmethane oxidation rates in soils outside this range. Organic andmineral layers within the soil showed differences in potentialmethane oxidation rate, with methane oxidation being most rapid inthe buried organic layer and least rapid in the surface organiclayer. The importance of soil structure and gas diffusionlimitation is underlined, as is the strong temperature dependenceof methane oxidation when such diffusion limitation is removed.  相似文献   
3.
ABSTRACT: Surface water, groundwater, and groundwater discharge quality surveys were conducted in Cherrystone Inlet, on Virginia's Eastern Shore. Shallow groundwater below agricultural fields had nitrate concentrations significantly higher than inlet surface waters and shallow groundwater underlying forested land. This elevated nitrate groundwater discharged to adjacent surface waters. Nearshore discharge rates of water across the sediment-water interface ranged from 0.02 to 3.69 liters·m?2·hr?1 during the surveys. The discharge was greatest nearshore at low tide periods, and decreased markedly with increasing distance offshore. Vertical hydraulic heads, Eh, and inorganic nitrogen flux in the sediments followed similar patterns. Nitrate was the predominant nitrogen species discharged nearshore adjacent to agricultural land use, changing to ammonium farther offshore. Sediment nitrogen fluxes were sufficient to cause observable impacts on surface water quality; nitrate concentrations were up to 20 times greater in areas of groundwater discharge than in the main stem inlet water. Based on DIN:DIP ratios, nitrogen contributions from direct groundwater discharge and tidal creek inputs appear to be of significant ecological importance. This groundwater discharge links land use activity and the quality of surface water, and therefore must be considered in selection of best management practices and water quality management strategies.  相似文献   
4.
Globally, more than 30 % of all food that is produced is ultimately lost and/or wasted through inefficiencies in the food supply chain. In the developed world this wastage is centred on the last stage in the supply chain; the end-consumer throwing away food that is purchased but not eaten. In contrast, in the developing world the bulk of lost food occurs in the early stages of the supply chain (production, harvesting and distribution). Excess food consumption is a similarly inefficient use of global agricultural production; with almost 1 billion people now classed as obese, 842 million people are suffering from chronic hunger. Given the magnitude of greenhouse gas emissions from the agricultural sector, strategies that reduce food loss and wastage, or address excess caloric consumption, have great potential as effective tools in global climate change mitigation. Here, we examine the challenges of robust quantification of food wastage and consumption inefficiencies, and their associated greenhouse gas emissions, along the supply chain. We find that the quality and quantity of data are highly variable within and between geographical regions, with the greatest range tending to be associated with developing nations. Estimation of production-phase GHG emissions for food wastage and excess consumption is found to be similarly challenging on a global scale, with use of IPCC default (Tier 1) emission factors for food production being required in many regions. Where robust food waste data and production-phase emission factors do exist—such as for the UK—we find that avoiding consumer-phase food waste can deliver significant up-stream reductions in GHG emissions from the agricultural sector. Eliminating consumer milk waste in the UK alone could mitigate up to 200 Gg CO2e year?1; scaled up globally, we estimate mitigation potential of over 25,000 Gg CO2e year?1.  相似文献   
5.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same field’s drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   
6.
Emissions of the powerful greenhouse gas nitrous oxide (N2O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N2O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N2O from the surface of a fertilised barley field with measurement of dissolved N2O and nitrate (NO3) concentrations in the same fields drainage waters. Dissolved N2O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N2O flux from the field surface. The range in N2O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N2O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N2O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N2O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF5-g) for NO3 in drainage waters.  相似文献   
7.
Direct and indirect nitrous oxide (N2O) emissions and leaching losses from an intensively managed grazed pasture in the Ythan catchment, Aberdeenshire, UK, were measured and compared over a 17-month period. Simultaneous measurements of farm-wide leaching losses of N2O were also made and catchment-wide fluxes were estimated from existing N leaching data. The relative importance of direct and indirect N2O fluxes at the field, farm and catchment scale was then assessed. At the field scale we found that direct N2O emissions were low (1.2 kg N ha−1 year−1, 0.6% of N input) with indirect N2O emissions via drainage waters comprising a significant proportion (25%) of total N2O emissions. At the whole-farm scale, the N2O-N emission factor (0.003) for leached NO3-N (EF5-g) was in line with the IPCC's recent downward revision. At the catchment scale, a direct N2O flux of 1.9 kg N ha−1 year−1 and an indirect flux of 0.06 kg N2O-N ha−1 year−1 were estimated. This study lends further support to the recent downward revision of the IPCC emission factor for N2O arising from leached N in surface and ground waters (EF5-g) and highlights the need for multiple point sampling to ensure that the importance of indirect N2O losses via drainage waters is not misrepresented at the farm and catchment scales.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号