首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   4篇
基础理论   3篇
评价与监测   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2009年   1篇
  2006年   1篇
  1989年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Miscanthus × Giganteus is an excellent candidate for energy cultivation. Here we report, for the first time, the results of the pyrolysis of Miscanthus × Giganteus straw or pellets both in tubular reactor (3–6 g) and in rotary kiln (10–30 g). At 400–600°C the fractions obtained from both reactors are: solid 16–25 (wt.%); liquids 25–40; water 15–20 and gases 15–50. GC-MS analyses of pyrolysis liquids reveal the occurrence of phenolic derivatives and ethanol from lignin, furanic and linear oxygenated compounds from cellulose and hemicellulose. Finally the chars produced by the pyrolysis of M×G pellets in rotary kiln present good calorific values close to 29,000 J/g. Additionally, activated carbons with a BET surface area as high as 800–900 m2/g are produced from pellets. These results indicate that chars have a good potential either for energy production, e.g. briquetting, or as adsorbents precursors.  相似文献   
2.
Legally protected national parks provide an appropriate substrate for essential long-term study of ecosystem structure and function, and for detecting trends in natural and human-induced stress. The absence of unplanned site manipulation in such areas is especially valuable for such research. Our present research has two major components. The first is the long-term ecosystem-level study of the effects of atmospheric contaminants on ecosystem processes. The overall objective is to evaluate ecosystem aquatic/terrestrial linkages and their role in establishing aquatic ecosystem sensitivity to anthropic atmospheric inputs. Four watershed/lake ecosystems, representative of much of the region's diversity, are under study. Two mature boreal sites on Isle Royale are characterized by first-order perennial surface stream input and lake outflow. Two additional mainland northern hardwood sites, one with shallow soils and one with soils derived from glacial till, are characterized by sensitive aquatic systems. One site is in a private reserve and the other in Pictured Rocks National Lakeshore. Surface outflow is gaged by Parshall flume and stage height recorder. Meteorological stations record variables for estimating evapotranspiration. One-tenth ha plots have been established in all watersheds and three sites have had intensive study of precipitation modification by canopy and forest soil. Five-year mean maximum and minimum lake pH varies from 6.85 to 4.94, Ca2+ from 1070 to 54 eq l-1, K+ from 5.42 to 8.35 eq l-1, NH 4 + from 10.12 to 3.23 eq l-1, HCO 3 sup- from 635 to 24 eq l-1, NO 3 sup- from 3.27 to 1.54 eq l-1, and SO 4 sup2- from 110 to 52.7 eq l-1. The relatively high NO 3 sup- values observed in one lake are the result of stream drainage from a watershed dominated by Alnus rugosa, and another has high seasonal NO 3 sup- inputs during spring runoff. However, owing to periodic winter thaws, significant snowpack release of nutrients generally precedes maximum spring stream runoff. Water chemistry in both sensitive and non-sensitive lakes appears to be primarily reflecting how the conterminous terrestrial system is retaining atmospheric inputs more than the quality of direct lake atmospheric input. This is especially evident for H+, NO 3 sup- and SO 4 sup2- .The second component is the assessment of watershed acidification, SO 4 sup2- output and soil retention across an input gradient. An anthropic deposition gradient provides the opportunity for intersite time-trend analyses as to the effects of inputs. Our study objective was to see if the decreasing west to east input/output values for SO 4 sup2- , noted in small first-order watersheds in national parks from Minnesota to Ohio, might be related to present atmospheric inputs, potential and total soil SO 4 sup2- adsorption, or soil SO 4 sup2- desorption from earlier higher inputs. Precipitation pH ranged from 5.05 at Fernberg, Minnesota to 4.24 at Wooster, Ohio. Minimum and maximum concentrations of NH 4 + , NO 3 sup- , SO 4 sup2- and Cl- were also found at these stations. Stream water concentrations of NO 3 sup- and SO 4 sup2- increase in a similar but sharper gradient. Streams are well buffered. Cation, HCO 3 sup- , NO 3 sup- and especially SO 4 sup2- output increase west to east, but H+ output decreases. At the eastern site stream SO 4 sup2- concentration and output exceed HCO 3 sup- . Potential soil SO 4 sup2- adsorption capacity increases eastward, but this capacity is filled. Crystalline Fe hydrous oxides appear more effective than amorphous Fe hydrous oxides at adsorbing SO 4 sup2- . High anthropic anion inputs, inability of forest soil to adsorb additional inputs and perhaps SO 4 sup2- desorption appear responsible for the replacement of HCO 3 sup- by SO 4 sup2- in stream water. The major cation accompanying SO 4 sup2- is Ca2+.Contribution from Fourth World Wilderness Congress—Acid Rain Symposium, Denver (Estes Park), Colorado, September 11–18, 1987.  相似文献   
3.

In this work it was shown that polymers can be recycled into a promising adsorbent for organic dyes and phenols waste removal. For this, a series of activated carbons (ACs) were produced from mixture of ferrocene or titanium acetylacetonate with poly(furfuryl alcohol) (PFA) by steam activation. The introduction of ferrocene as Fe precursor was found to be an efficient catalyst in mesoporosity development during carbonization and subsequent steam activation at 850 °C, whereas the polymer based only and titanium-doped ACs are typically microporous. The porous structure parameters were determined from nitrogen adsorption isotherms measured at 77 K. Scanning electron microscopy was applied to monitor the metal distribution of metal-loaded char and the surface morphology of activated carbons. The adsorption capacity was found to be dependent mainly on pore size distribution. In the case of phenol adsorption, the adsorption was defined by volume of pore with size 0.8–1.4 nm; whereas, for Congo red best fit was observed for volume of pore with size 2–5 nm.

  相似文献   
4.
Studies on the heavy metal concentrations on spider webs in relation to the pathways of pollution penetration (external and internal) have yet to be performed. This work assesses the concentration levels of two heavy metals: essential copper (Cu) and toxic lead (Pb) in spider webs and spiders (females, males and juveniles). Spiders divided into three treatment groups were exposed to the heavy metals in their diet as prey (fruit flies and mealworms larvae) were artificially contaminated with Cu and Pb. In general, we found higher rates of Cu compared to Pb concentrations in spiders and their webs. A positive correlation between levels of Cu and Pb in webs and spiders was found. Males had higher concentrations of both metals Cu and Pb in their bodies and webs compared to females. In an additional experiment, washed webs had significantly less metals than unwashed suggesting the dominance of external pollution in the contamination pathway.  相似文献   
5.
Cellulose/polyethylene (CPE) mixture 3:1, w/w with and without three clay catalysts (K10 – montmorillonite K10, KSF – montmorillonite KSF, B – Bentonite) addition were subjected to pyrolysis at temperatures 400, 450 and 500 °C with heating rate of 100 °C/s to produce bio-oil with high yield. The pyrolytic oil yield was in the range of 41.3–79.5 wt% depending on the temperature, the type and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (79.5 wt%). The higher temperature of catalytic pyrolysis of cellulose/polyethylene mixture the higher yield of bio-oil is. Contrarily, increasing amount of montmorillonite results in significant, almost linear decrease in bio-oil yield followed by a significant increase of gas yield. The addition of clay catalysts to CPE mixture has a various influence on the distribution of bio-oil components. The addition of montmorillonite K10 to cellulose/polyethylene mixture promotes the deepest conversion of polyethylene and cellulose. Additionally, more saturated than unsaturated hydrocarbons are present in resultant bio-oils. The proportion of liquid hydrocarbons is the highest when a montmorillonite K10 is acting as a catalyst.  相似文献   
6.
Cellulose/polyethylene mixture (3:1 w/w) and Tetra Pak wastes with and without metal chloride (ZnCl2, AlCl3, CuCl2, FeCl3) addition were subjected to a fast pyrolysis process at 350–500 °C and heating rate 100 °C/s to evaluate the possibility of liquid product formation with a high yield. The addition of zinc, aluminum, iron and copper chlorides has influenced the range of samples decomposition as well as the chemical composition of resulting pyrolytic oils. It was found that formation of levoglucosan, the main product of cellulose thermal decomposition, and phenol and its derivatives decreased in a presence of metal chlorides. Non-catalytic fast pyrolysis of polyethylene leads to the formation of solid long chain hydrocarbons, whereas the addition of metal chlorides promotes the formation of more liquid hydrocarbons.  相似文献   
7.
8.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号