首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   3篇
基础理论   1篇
污染及防治   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
Self-binding ability of the pectin molecules was used to produce pectin films using the compression molding technique, as an alternative method to the high energy-demanding and solvent-using casting technique. Moreover, incorporation of fungal biomass and its effects on the properties of the films was studied. Pectin powder plasticized with 30% glycerol was subjected to heat compression molding (120 °C, 1.33 MPa, 10 min) yielding pectin films with tensile strength and elongation at break of 15.7 MPa and 5.5%, respectively. The filamentous fungus Rhizopus oryzae was cultivated using the water-soluble nutrients obtained from citrus waste and yielded a biomass containing 31% proteins and 20% lipids. Comparatively, the same strain was cultivated in a semi-synthetic medium resulting in a biomass with higher protein (60%) and lower lipid content (10%). SEM images showed addition of biomass yielded films with less debris compared to the pectin films. Incorporation of the low protein content biomass up to 15% did not significantly reduce the mechanical strength of the pectin films. In contrast, addition of protein-rich biomass (up to 20%) enhanced the tensile strength of the films (16.1–19.3 MPa). Lastly, the fungal biomass reduced the water vapor permeability of the pectin films.  相似文献   
2.
A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.  相似文献   
3.
The COVID-19 pandemic has highlighted weaknesses in global food systems, as well as opening windows of opportunity for innovation and transformation. While the nature and extent of this crisis is rare, extreme climatic events will increase in magnitude and frequency, threatening similar societal impacts. It is therefore critical to identify mechanisms for developing food systems that are resilient to such impacts. We examine impacts of the crisis on UK food systems and how these further entrenched social inequalities. We present data on the experiences and actions of producers, consumers, and community organisers. The data were collected by adapting ongoing research to include surveys, interviews and online workshops focused on the pandemic. Actors’ responses to the pandemic foreshadow how enduring change to food systems can be achieved. We identify support required to enable these transformations and argue that it is vital that these opportunities are embedded in food justice principles which promote people-centred approaches to avoid exacerbating injustices prevalent pre-crisis. Learning from these experiences therefore provides insights for how to make food systems elsewhere more resilient and just.  相似文献   
4.
Heterogeneous catalysts are used for control of environmental pollution. Heterogeneous catalysts are easily separated from the reaction mixture, thus allowing their recovery and re-use. There is a need for catalysts that are efficient under mild conditions. Here, we show that silica-supported antimony(III) chloride (SbCl3/SiO2) acts as a highly efficient heterogeneous Lewis acid catalyst for the Paal–Knorr pyrrole synthesis at room temperature. We found that condensation of hexane-2,5-dione with aromatic and aliphatic primary amines in hexane using SbCl3/SiO2 with 7.6 wt% SbCl3 was the best reaction condition. The silica support facilitated the workup of the reaction mixture and provided a reusable catalyst at least for 7 runs without significant loss in activity. Indeed, the yield was 98% for the first run and 84% for the 7th run. We conclude that low catalyst loading, operational simplicity, practicability and applicability to various substrates make this reaction an interesting alternative to previously applied procedures. From the environmental standpoint, this eco-friendly catalyst is stable, highly active, easy to prepare and handle.  相似文献   
5.
Journal of Polymers and the Environment - Eelectrospun fibrous mats for oral ulcer dressing should be able to attach oral mucosa in a high moisture environment and provide desirable therapeutic...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号