首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
废物处理   1篇
  2004年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
The objective of this study is to evaluate the use of the Analytical Element Method (AEM) toward multiobjective, multiscale, ongoing modeling needs at complex hydrologic sites such as those managed by the US Department of Energy. This method presents several advantages over the traditional numerical methods that include absence of grid, natural incorporation of hydrologic features, and generation of an exact solution at every point in a flow field. The AEM with its semi-analytical formulation is particularly efficient in addressing what-if scenarios, the resolution of boundary conditions, and the incorporation of new data all of which are important aspects of remediation efforts in complex sites. Our model accounted for important hydrologic features in an area of the Savannah River Site, South Carolina that included river branches, artificial surface basins, monitoring wells, and the existence of heterogeneities. Our simulated heads were found to be in excellent agreement with the measured heads, with over 90% of the wells exhibiting a maximum discrepancy of less than 10 ft. The AEM was found to be a very efficient and fast method for the analysis of a flow field even when a limited number of elements was considered. The AEM was seen to lead to better physical understanding and resolution of the critical components of a groundwater system and it can offer significant advantages in using models to guide site characterization and remediation efforts.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号