首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
废物处理   3篇
环保管理   8篇
综合类   1篇
污染及防治   2篇
  2011年   1篇
  2010年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  1982年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Enhanced rhizosphere degradation uses plants to stimulate the rhizosphere microbial community to degrade organic contaminants. We measured changes in microbial communities caused by the addition of two species of plants in a soil contaminated with 31,000 ppm of total petroleum hydrocarbons. Perennial ryegrass and/or alfalfa increased the number of rhizosphere bacteria in the hydrocarbon-contaminated soil. These plants also increased the number of bacteria capable of petroleum degradation as estimated by the most probable number (MPN) method. Eco-Biolog plates did not detect changes in metabolic diversity between bulk and rhizosphere samples but denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified partial 16S rDNA sequences indicated a shift in the bacterial community in the rhizosphere samples. Dice coefficient matrices derived from DGGE profiles showed similarities between the rhizospheres of alfalfa and perennial ryegrass/alfalfa mixture in the contaminated soil at week seven. Perennial ryegrass and perennial ryegrass/alfalfa mixture caused the greatest change in the rhizosphere bacterial community as determined by DGGE analysis. We concluded that plants altered the microbial population; these changes were plant-specific and could contribute to degradation of petroleum hydrocarbons in contaminated soil.  相似文献   
6.
Oil is the world’s primary source of non-renewable energy, and it has also contaminated ocean coastlines due to spills. It is therefore important to have remediation treatments that are both effective, and ecologically not harmful. Current in situ bioremediation methods consist primarily of biostimulation, through addition of nutrients, and bioaugmentation, the addition of hydrocarbon degrading microorganisms. The purpose of this article is to discuss successful and unsuccessful remediation through the use of biostimulation, bioaugmentation, or a combination of both. As microbial treatments are capable of enhancing coastal oil remediation in temperate and tropical settings, the success of a particular remediation approach will be determined based on the type and amount of oil, type of soil and/or sediment, microbial inoculants and the often changing physical, chemical and biological environmental conditions. Environmental factors and limitations will be discussed as to why certain bioremediation events were successful while others were not.  相似文献   
7.
8.
Water, Air, &; Soil Pollution: Focus -  相似文献   
9.
Water, Air, &; Soil Pollution: Focus -  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号