首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
废物处理   2篇
环保管理   1篇
污染及防治   4篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Fungal Degradation of Poly(l-lactide) in Soil and in Compost   总被引:1,自引:1,他引:0  
The biodegradability of polymers by microorganisms is generally studied in a real environment that contains a natural mixture of fungi and bacteria. The present research mainly focused on the purely fungal degradation of poly(l-lactide), PLLA, to enclose the part of fungi in a real process of biodegradation and to understand the kinetics of biodegradation. Respirometric tests were realized in soil at 30?°C, and in compost at 30?and 58?°C. Results indicated that temperature is the predominant parameter governing the fungal degradation of PLLA. Moreover, in real compost, the biodegradation kinetics of the PLLA revealed a synergy between bacteria and fungi. The curves of PLLA and cellulose biodegradation were modeled by Hill sigmo?d. Fungal degradation was completed by investigating the physical and the chemical properties of the polymer during the process of degradation using several analytical methods such as matrix assisted laser desorption ionization-time of fly spectroscopy, infrared spectroscopy, size exclusion chromatography, and differential scanning calorimetry. These experiments led to a better understanding of the various stages of fungal degradation of PLLA: hydrolysis as well as mineralization. Furthermore, metabolizing products (by-products) of PLLA was investigated also.  相似文献   
2.
Saadi I  Laor Y  Raviv M  Medina S 《Chemosphere》2007,66(1):75-83
Extremely high organic load and the toxic nature of olive mill wastewater (OMW) prevent their direct discharge into domestic wastewater treatment systems. In addition to the various treatment schemes designed for such wastewater, controlled land spreading of untreated OMW has been suggested as an alternative mean of disposal. A field study was conducted between October 2004 and September 2005 to assess possible effects of OMW on soil microbial activity and potential phytotoxicity. The experiment was carried out in an organic orchard located on a Vertisol-type soil (Jezre'el Valley, Israel) and included two application levels of OMW (36 and 72m(3)ha(-1)). Total microbial counts, and to less extent the hydrolytic activity and soil respiration were increased following the high OMW application level. A bench-scale lab experiment showed that the rate of OMW mineralization was mainly dependent on the general status of soil activity and was not related to previous acclimatization of the soil microflora to OMW. Soil phytotoxicity (% germination and root elongation) was assessed in soil extracts of samples collected before and after each OMW application, using germinating cress (Lepidium sativum L.) seeds. We found direct short-term effect of OMW application on soil phytotoxicity. However, the soil was partly or completely recovered between successive applications. No further phytotoxicity was observed in treated soils as compared with control soil, 3 months after OMW application. Such short-term phytotoxicity was not in correlation with measured EC and total polyphenols in the soil extracts. Overall, the results of this study further support a safe controlled OMW spreading on lands that are not associated with sensitive aquifers.  相似文献   
3.
The limited water resources of Egypt lead to widespread water-stress. Consequently, the use of marginal water sources, such as agricultural drainage waters, provides one of the national feasible solutions to the problem. However, the marginal quality of the drainage waters may restrict their use.The objective of this research is to develop a tool for planning and managing the reuse of agricultural drainage water for irrigation in the Nile Delta. This is achieved by classifying the pollution levels of drainage water into several categories using a statistical clustering approach that may ensure simple but accurate information about the pollution levels and water characteristics at any point within the drainage system.The derived clusters are then visualized by using a Geographical Information System (GIS) to draw thematic maps based on the entire Nile Delta, thus making GIS as a decision support system. The obtained maps may assist the decision makers in managing and controlling pollution in the Nile Delta regions. The clustering process also provides an effective overview of those spots in the Nile Delta where intensified monitoring activities are required. Consequently, the obtained results make a major contribution to the assessment and redesign of the Egyptian national water quality monitoring network.  相似文献   
4.
The present work mainly dedicated to fungal degradation of poly(butylene adipate-co-terephthalate) [PBAT], to enclose the role of fungi in a real process of biodegradation, the degree of degradation, and to understand the kinetics of PBAT biodegradation. Respirometer tests were realized in soil at 30 °C, and in compost at 30 and 58 °C. Results have shown that temperature is one of the essential parameters governing the fungal degradation of PBAT. Moreover, the final rates of PBAT biodegradation in an inoculated compost with fungi and in a real compost were found comparable, which means that the selected fungi were efficient as much as a mixture of bacteria and fungi. The curves of PBAT biodegradation were modeled by Hill sigmoid. Fungal degradation was completed by investigating the physical and the chemical properties of the polymer during the process of degradation using several analytical methods such as matrix assisted laser desorption ionization-time of fly spectroscopy, size exclusion chromatography, and differential scanning calorimetry. These experiments led to a better understanding of the various stages of fungal degradation of PBAT: hydrolysis as well as mineralization. Furthermore, the analysis of metabolizing products was investigated also.  相似文献   
5.
Saadi I  Borisover M  Armon R  Laor Y 《Chemosphere》2006,63(3):530-539
The potential of effluent DOM to undergo microbial degradation was assessed in batch experiments. Effluent samples from Haifa wastewater treatment plant and Qishon reservoir (Greater Haifa wastewater reclamation complex, Israel) were incubated either with effluent or soil microorganisms for a period of 2-4 months and were characterized by dissolved organic carbon contents (DOC), UV(254) absorbance and by fluorescence excitation-emission matrices. Three main fluorescence peaks were identified that can be attributed to humic/fulvic components and "protein-like" structures. During biodegradation, specific fluorescences (F/DOC) of the three peaks were increased at various extents, suggesting selective degradation of non-fluorescing constituents. In some cases increase in the effluent fluorescence (F) was observed thus proposing (i) the formation of new fluorescing material associated with DOM biodegradation and/or (ii) degradation of certain organic components capable of quenching DOM fluorescence. Based on the ratio between fluorescence intensity and UV(254), different biodegradation dynamics for fluorescent DOM constituents as compared with other UV-absorbing molecules was delineated. Overall, about 50% of the total DOM was found to be readily degradable such that residual resistant DOC levels were between 8 and 10 mg l(-1). Enhanced levels of residual DOM in effluent-irrigated soils may contribute to the DOM pool capable of carrying pollutants to groundwater.  相似文献   
6.
7.
Borisover M  Laor Y  Bukhanovsky N  Saadi I 《Chemosphere》2006,65(11):1925-1934
Using fluorescence intensity measurements, pyrene interactions with different types of effluent dissolved organic matter (EDOM) originated from treated municipal wastewater are examined. Multiple observations show that fluorescence intensity of pyrene–EDOM solutions is non-linearly related to pyrene concentration, with distinct concave-up dependence. Testing the effect of pyrene concentration on fluorescence intensity of pyrene–EDOM solutions provides a tool to examine whether binding of an organic compound to EDOM follows linear or non-linear isotherm. Possible coupling between static and dynamic quenching effects was addressed while analyzing fluorescence data. Limited number of EDOM binding sites results in a non-linear binding isotherm such that the concept of pyrene “partitioning” between aqueous phase and “bulky” EDOM organic phase is hardly relevant. Maximal EDOM capacity for pyrene binding is estimated approximately as 0.1% w w−1. Examination of the differences between the total fluorescence intensity of pyrene–EDOM solution and the fluorescence intensities of separated constituents (pyrene and EDOM) was used to illustrate the accumulation of pyrene–EDOM complexes and saturation of some EDOM binding sites. Strong interactions between pyrene and EDOM binding sites may result in pyrene distribution coefficients differing at least by a factor 3.5–7 at varying pyrene concentrations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号