首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   3篇
环保管理   3篇
综合类   3篇
基础理论   2篇
污染及防治   5篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
低C/N比污水生物脱氮所需外加碳源量的确定   总被引:8,自引:3,他引:8       下载免费PDF全文
利用中试规模实验装置,探讨了现有活性污泥工艺改造成间歇曝气生物脱氮工艺的实践中,碳氮比(C/N)对废水生物脱氮效率、脱氮反应速度的影响,分析了脱氮容量,确定了所需外加碳源量.   相似文献   
2.
Tropospheric ozone(O_3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O_3 damage, several agrochemicals have been assessed,including cytokinin(e.g., kinetin, KIN) and ethylenediurea(EDU) with cytokinin-like activity.In higher plant, leaves are primarily injured by O_3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3(2 × ambient O_3, 24 hr per day, for 8 days) on an O_3 sensitive line(S156) of snap bean(Phaseolus vulgaris), which is often used for biomonitoring O_3 pollution, were studied in a free air controlled exposure system. The day before starting the O_3 exposure, plants were sprayed with a solution of EDU(300 ppm), KIN(1 mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2 × ambient O_3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O_3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O_3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O_3 response across the leaf than the conventional fluorometer.  相似文献   
3.
Tropospheric ozone is an air pollutant that is toxic to plants, causing visible injury to foliage and a reduction in growth and yield. The use of plant bioindicators is one approach to assess the ozone impacts in diverse geographical areas. The objective of this study was to evaluate snap bean (Phaseolus vulgaris L.) as a potential bioindicator species. Three snap bean genotypes known to exhibit a range of ozone sensitivity were grown in pots under charcoal-filtered (CF) or nonfiltered (NF) treatments in open-top chambers, or under ambient air (AA) conditions. Treatment effects on biomass were not significant at 56 days after planting (DAP), but midseason foliar injury increased in the NF and AA treatments relative to CF controls. An increase in ozone from 25 to 30 nL L(-1) in CF controls to approximately 50 nL L(-1) in the NF and AA treatments was found to suppress final pod dry weight per plant by 40 to 60% in the most sensitive genotype S156. The same treatments suppressed final pod dry weight by 20 to 30% in a moderately sensitive genotype Oregon-91, and by 10% or less in a tolerant genotype R123. An S156 to R123 yield ratio of approximately one was observed under CF conditions. The S156 to R123 yield ratio declined to 0.6 to 0.7 in the NF treatment and declined further to 0.4 to 0.5 in the AA treatment, suggesting that ozone impact was underestimated in the open-top chambers. The results suggest that a snap bean bioindicator system has the potential to detect ambient ozone effects at present-day ozone concentrations.  相似文献   
4.
The goals of this study were to document the development of ozone-induced foliar injury, on a leaf-by-leaf basis, and to develop ozone exposure relationships for leaf cohorts and individual tall milkweeds (Asclepias exaltata L.) in Great Smoky Mountains National Park. Plants were classified as either ozone-sensitive or insensitive based on the amount of foliar injury. Sensitive plants developed injury earlier in the season and to a greater extent than insensitive plants. Older leaf cohorts were more likely to belong to high injury classes by the end of each of the two growing seasons. In addition, leaf loss was more likely for older cohorts (2000) and lower leaf positions (2001) than younger cohorts and upper leaves, respectively. Most leaves abscised without prior ozone-like stippling or chlorosis. Failure to take this into account can result in underestimation of the effects of ozone on these plants.  相似文献   
5.
The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar?>>?Sufi?≥?Bijoy?≥?Shatabdi?>?Bari-26?≥?Gourab?>?Bari-25?≥?Prodip?≥?Sourav?>>?Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars’ PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.  相似文献   
6.
Elevated CO2 concentrations expected in the 21st century can stimulate plant growth and yield, whereas tropospheric O3 suppresses plant growth and yield in many areas of the world. Recent experiments showed that elevated CO2 often protects plants from O3 stress, but this has not been tested for many important crop species including snap bean (Phaseolus vulgaris L.). The objective of this study was to determine if elevated CO2 protects snap bean from O3 stress. An O3-tolerant cultivar (Tenderette) and an O3-sensitive selection (S156) were exposed from shortly after emergence to maturity to mixtures of CO2 and O3 in open-top field chambers. The two CO2 treatments were ambient and ambient with CO2 added for 24 h d(-1) resulting in seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 366 and 697 microL L(-1), respectively. The two O3 treatments were charcoal-filtered air and nonfiltered air with O3 added for 12 h d(-1) to achieve seasonal 12 h d(-1) (0800-2000 h EST) mean concentrations of 23 and 72 nL L(-1), respectively. Elevated CO2 significantly stimulated growth and pod weight of Tenderette and S156, whereas elevated O3 significantly suppressed growth and pod weight of S156 but not of Tenderette. The suppressive effect of elevated O3 on pod dry weight of S156 was approximately 75% at ambient CO2 and approximately 60% at elevated CO2 (harvests combined). This amount of protection from O3 stress afforded by elevated CO2 was much less than reported for other crop species. Extreme sensitivity to O3 may be the reason elevated CO2 failed to significantly protect S156 from O3 stress.  相似文献   
7.
8.
Ethylenediurea(EDU)has been used as a chemical protectant against ozone(03).However,its protective effect and physiological mechanisms are still uncertain.The present study aimed to investigate the changes of foliar visible injury,physiological characteristics and emission rates of volatile organic compounds(VOCs)in one-year-old Populus alba"Berolinensis"saplings pretreated with EDU and exposed to elevated O_3(EO,120μg/m~3).The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application(p0.05).Under EO,net photosynthetic rate,the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and600 mg/L EDU were similar to unexposed controls and significantly higher compared to EOstressed plants without EDU pretreatment,respectively.Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9%and 21.3%with 300 and600 mg/L EDU pretreatment,respectively.EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4%and 37.5%in EO plants pretreated with 300 and 600 mg/L EDU pretreatment,respectively(p0.05).Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments.Similarly,VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment.These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against 03 stress.  相似文献   
9.
Soybean [Glycine max (L.) Merr.] cultivars Essex and Forrest that exhibit differences in ozone (O(3)) sensitivity were used in greenhouse experiments to investigate the role of leaf extracellular antioxidants in O(3) injury responses. Charcoal-filtered air and elevated O(3) conditions were used to assess genetic, leaf age, and O(3) effects. In both cultivars, the extracellular ascorbate pool consisted of 80-98% dehydroascorbic acid, the oxidized form of ascorbic acid (AA) that is not an antioxidant. For all combinations of genotype and O(3) treatments, extracellular AA levels were low (1-30nmolg(-1) FW) and represented 3-30% of the total antioxidant capacity. Total extracellular antioxidant capacity was twofold greater in Essex compared with Forrest, consistent with greater O(3) tolerance of Essex. The results suggest that extracellular antioxidant metabolites in addition to ascorbate contribute to detoxification of O(3) in soybean leaves and possibly affect plant sensitivity to O(3) injury.  相似文献   
10.
Cutleaf coneflower (Rudbeckia laciniata L.), crown-beard (Verbesina occidentalis Walt.), and tall milkweed (Asclepias exaltata L.) are wildflower species native to Great Smoky Mountains National Park (U.S.A.). Natural populations of each species were analyzed for leaf ascorbic acid (AA) and dehydroascorbic acid (DHA) to assess the role of ascorbate in protecting the plants from ozone stress. Tall milkweed contained greater quantities of AA (7-10 micromol g(-1) fresh weight) than crown-beard (2-4 micromol g(-1) fresh weight) or cutleaf coneflower (0.5-2 micromol g(-1) fresh weight). DHA was elevated in crown-beard and cutleaf coneflower relative to tall milkweed suggesting a diminished capacity for converting DHA into AA. Tall milkweed accumulated AA in the leaf apoplast (30-100 nmol g(-1) fresh weight) with individuals expressing ozone foliar injury symptoms late in the season having less apoplast AA. In contrast, AA was not present in the leaf apoplast of either crown-beard or cutleaf coneflower. Unidentified antioxidant compounds were present in the leaf apoplast of all three species. Overall, distinct differences in antioxidant metabolism were found in the wildflower species that corresponded with differences in ozone sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号