首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   2篇
环保管理   1篇
综合类   2篇
  2011年   1篇
  2009年   1篇
  2005年   1篇
  2003年   1篇
  1968年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
One of the energetic benefits of daily torpor over prolonged hibernation is that it enables animals to regularly forage and, therefore, replenish food reserves between bouts of torpor. However, little is known about the diet of predators undergoing torpor or whether differences in prey composition among individuals influence torpor characteristics. Here, we test the hypothesis that prey composition affects winter torpor use and patterns of a population of carnivorous marsupial, the brush-tailed mulgara (Dasycercus blythi), in the Great Sandy Desert, Australia. Mulgaras in the study population captured a wide range of prey including vertebrates (mammals, reptiles, birds), seven insect orders, spiders and centipedes. The proportion of vertebrates in the diet was negatively correlated with both frequency of torpor use and maximum bout duration. This variation in torpor use with diet can be explained by the higher energetic content of vertebrates as well as their larger size. Even assuming uniform intake of prey biomass among individuals, those that subsisted on an invertebrate-dominated diet during winter apparently suffered energetic shortages as a result of the scarcity of invertebrate taxa with high energy content (such as insect larvae). Our study is the first to demonstrate a link between diet composition and daily torpor use in a free-ranging mammal.  相似文献   
3.
Nutrient and sediment runoff from newly constructed levee embankments pose a threat to water quality during soft armor vegetation establishment. Research was initiated in 2008 and 2009 to evaluate the effect of bermudagrass ( L.) coverage and N source on nutrient and sediment runoff from levee embankments during establishment. Bermudagrass plots were seeded at 195.3 kg pure live seed ha and fertilized at 50 kg N ha using a water-soluble N source, urea or NH-NO, or slow-release N source, S-coated urea (SCU) or urea formaldehyde (UF), with controls unfertilized. Vegetative cover percentage, time until the onset of runoff, runoff volume, and total solids (TS), NO-N, and NH-N concentrations were measured from simulated and natural rainfall events for 70 d in 2008 and 56 d in 2009. Bermudagrass at 90% grass cover delayed the onset of runoff an additional 441 to 538 s and reduced runoff volumes 74 to 84% of that exhibited at 10% grass cover. Nitrogen fertilizers did not accelerate bermudagrass growth sufficiently, however, to reduce TS loading compared with unfertilized bermudagrass in either year of the study. The application of urea and SCU resulted in cumulative N losses of 2.45 and 3.13 kg ha compared with 1.59 kg ha from the unfertilized bermudagrass in 2008, and 1.73 kg ha from NH-NO vs. 0.24 kg ha from controls in 2009. Only UF increased bermudagrass establishment without increasing cumulative N losses compared with unfertilized bermudagrass. Therefore, the benefit of greater erosion and runoff resistance expected from N-accelerated vegetative growth did not occur but had the unintended consequence of higher N losses when water-soluble N and SCU fertilizers were applied.  相似文献   
4.
Advanced ash management technologies for CFBC ash   总被引:3,自引:0,他引:3  
The combustion of high-sulphur coal demands the reduction of sulphur emissions. The sorbent most often used in sulphur capture technology is calcium-based. Ashes from technologies such as circulating fluidized bed combustion (CFBC), therefore, contain high calcium levels. The use and disposal of these ashes poses challenges, because of highly exothermic reactions with water, high-pH leachates, and excessive expansion of solidified materials. This paper looks at the potential of two post-combustion ash treatment processes, CERCHAR hydration and AWDS disposal, in solving these challenges. A high-sulphur coal-derived CFBC ash is examined, after CERCHAR hydration treatment, in conjunction with a conventionally hydrated ash, in a range of chemical, geotechnical and utilization scenarios. The ashes are used to make no-cement and roller-compacted concrete as well as Ash Water Dense Suspensions (AWDS). The solidified mortar paste from no-cement concrete is subjected to an extensive geochemical examination to determine how solidification progresses and strength develops, from a chemical point of view.  相似文献   
5.
LIFAC is a more recent addition to flue gas desulphurization methods for reducing sulphur emissions during coal combustion for the production of electricity. Ashes from the combustion of a low-sulphur lignite coal using LIFAC technology were used to evaluate different ash management strategies. The ashes, as produced and after treatment by the CERCHAR hydration process, were examined for their disposal characteristics and their utilization potential in concrete. They were also evaluated as underground disposal material using the AWDS process.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号