首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
环保管理   1篇
污染及防治   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Catalkaya EC  Kargi F 《Chemosphere》2007,69(3):485-492
Advanced oxidation of diuron in aqueous solution by Fenton's reagent using FeSO(4) as source of Fe(II) was investigated in the absence of light. Effects of operating parameters namely the concentrations of pesticide (diuron), H(2)O(2) and Fe(II) on oxidation of diuron was investigated by using Box-Behnken statistical experiment design and the surface response analysis. Diuron oxidation by the Fenton reagent was evaluated by determining the total organic carbon (TOC), diuron, and adsorbable organic halogen (AOX) removals. Concentration ranges of the reagents resulting in the highest level of diuron oxidation were determined. Diuron removal increased with increasing H(2)O(2) and Fe(II) concentrations up to a certain level. Diuron concentration had a more profound effect than H(2)O(2) and Fe(II) in removal of diuron, TOC and AOX from the aqueous solution. Nearly complete (98.5%) disappearance of diuron was achieved after 15min reaction period. However, only 58% of diuron was mineralized after 240min under optimal operating conditions indicating formation of some intermediate products. Optimal H(2)O(2)/Fe(II)/diuron ratio resulting in the maximum diuron removal (98.5%) was found to be 302/38/20 (mgl(-1)).  相似文献   
2.
Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号