首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   2篇
  2013年   1篇
  2011年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Abstract: The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.  相似文献   
3.
Excessive nitrate leaching from the U.S. Corn Belt has created serious water quality problems and contributed to the expansion of the hypoxic zone in the Gulf of Mexico. We evaluated the effect of implementing the late spring nitrate test (LSNT) for corn (Zea mays L.) grown within a 400-ha, tile-drained subbasin in central Iowa. Surface water discharge and NO3 concentrations from the treated subbasin and two adjacent subbasins receiving primarily fall-applied, anhydrous ammonia were compared. In two of four years, the LSNT method significantly reduced N fertilizer applications compared with the farmers' standard practices. Average corn yield from LSNT fields and nonlimiting N fertilizer check strips was not significantly different. Autoregressive (AR) models using weekly time series in surface water NO3 concentration differences between the LSNT and control subbasins indicated no consistent significant differences during the pre-LSNT (1992-1996) period. However, by the second year (1998) of the treatment period (1997-2000), NO3 concentrations in surface water from the treated subbasin were significantly lower than the concentrations coming from both control basins. Annual average flow-weighted NO3 concentrations for the last two years (1999-2000) were 11.3 mg N L(-1) for the LSNT and subbasin and 16.0 mg N L(-1) for the control subbasins. Based on these values and the AR models, widespread adoption of the LSNT program for managing N fertilizer where fall N application is typically practiced could result in a > or = 30% decrease for NO3 concentrations in surface water.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号