首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
综合类   1篇
评价与监测   1篇
  2009年   1篇
  2004年   1篇
  1997年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Monitoring of Phenol in Wastewater Bioremediation by HPLC   总被引:1,自引:0,他引:1  
Bioremediation emphasizes the detoxification and destruction of toxic substances by microorganisms. Wastewater obtained from an industrial concern was solvent extracted with methyl alcohol and dichloromethane and analysed by GC/MS. Besides phenol, a large variety of organic compounds were detected. Under controlled laboratory conditions, the wastewater was innoculated with a mixed culture of microorganisms specially selected for their abilities to degrade phenol. Samples were collected at regular intervals from the stirred tank bioreactor and analysed for phenol by reverse phase HPLC with a C18 column. Results shows that from an initial phenol concentration of 987 ppm, slightly more than 50% was destroyed within 163 hours. The dry weight of the microorganisms and the plate count (CFU/ml) shows a steady increase from 0.5238 gms to 0.5355 gms and from 1.1E+9 to 1.94E+13 respectively over the same period. This suggested that the phenol was consumed by the microorganisms as the sole carbon source.  相似文献   
2.
Plant emission of volatile organic compounds (VOCs) has a significant impact on arthropods and plants and alters important functions in the agroecosystems. Three field source–sink microcosm experiments evaluated variation in wheat plants volatile emissions and its impact on neighbouring wheat plants’ performance caused by genotype, aphid herbivory and soil nutrient availability due to different cropping histories. An electronic nose detected qualitative differences in volatile emissions. Two of the experiments established the source–sink relationships forcing the volatiles through pipes. In these experiments wheat genotype was introduced as a variable of the source plants. In the third experiment, the emissions of volatiles dispersed naturally affecting the neighbourhood only by proximity and wheat genotype was a controlled factor. Plant genotype, aphid attack and soil chemical changes caused by different cropping histories affected wheat volatile emissions despite independent variations in plant biomass or resource allocation. This is the first report of changes in distant plant biomass according to neighbouring plant genotype and agricultural history. Wheat VOCs emissions were associated with changes in soil organic C, Ca, Mg, total nitrogen and cation exchange capacity caused by the different cropping histories of the soils tested. Variability in total biomass and resource allocation increased due to changes in VOCs emissions promoted by longer cropping history or aphid feeding in two genotypes. When volatiles were naturally dispersed into the neighbourhood, tiller weight in the sink individuals depended on plant genotype and cropping history of its neighbours (i.e. VOCs source). These findings highlight that ecological and environmental consequences of agricultural practices are more complex than normally thought.  相似文献   
3.
Ultraviolet-B radiation is an environmental stress for plants and this situation could become aggravated in the next decades. In this study we used Italian ryegrass (Lolium multiflorum Lam.) as a model system to test whether an environmental stress derived from global change, such as UVB, can influence the efficacy of control procedures and evolution toward herbicide resistance. We grew three generations of Italian ryegrass plants with and without UVB light and subjected them to a series of diclofop-methyl [(+/-)-2-[4-(2,4-dichlorophenoxy) phenoxy] propanoic acid, methyl ester] doses. The effect of selection history was tested with herbicide dose response. The effect of herbicide application on plant survival and biomass varied significantly among herbicide doses and with absence or presence of UVB light. In the absence of herbicide, the decrease in individual fecundity with increasing plant density was similar under both no-UVB and UVB light treatments. Only plants growing without UVB light increased production of reproductive structures in response to the decrease in density caused by herbicide application. Our study shows that UVB light was a weak stress factor for the ryegrass plants. However, when herbicide selection pressure was high, UVB light reduced the evolution toward herbicide tolerance. When selection pressure on the parental plants was lower, the two stress factors had a synergistic effect, causing changes in herbicide efficacy that in turn had demographic and evolutionary consequences. In the field, these interactions between stress factors might be of significance for annual weeds in which seed output is a major determinant in fitness.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号