首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
环保管理   19篇
基础理论   2篇
评价与监测   1篇
  2018年   1篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   5篇
  2001年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
An assessment of the benthic macroinvertebrate community was conducted to characterize the ecological recovery of a channelized main stem and two small tributaries at the Watershed Research and Education Center (WREC, Arkansas, USA). Three other headwater streams in the same basin were also sampled as controls and for biological reference information. A principal components analysis produced stream groupings along an overall gradient of physical habitat integrity, with degraded reaches showing lower RBP habitat scores, reduced flow velocities, smaller substrate sizes, greater conductivity, and higher percentages of sand and silt substrate. The benthic macroinvertebrate assemblage at WREC was dominated by fast-reproducing dipteran larvae (midge and mosquito larvae) and physid snails, which comprised 71.3% of the total macroinvertebrate abundance over three sampling periods. Several macroinvertebrate assemblage metrics should provide effective targets for monitoring overall improvements in the invertebrate assemblage including recovery towards a more complex food web (e.g., total number of taxa, number of EPT taxa, percent 2 dominant taxa). However, current habitat conditions and the extent of existing degradation, system isolation and surrounding urban or agricultural land-uses might affect the level of positive change to the system. We therefore suggest a preliminary restoration strategy involving the addition of pool habitats in the system. At one pool we collected a total of 29 taxa (dominated by water beetle predators), which was 59% of total number of taxa collected at WREC. Maintaining water-retentive pools to collect flows and maintain water permanence focuses on enhancing known biology and habitat, thus reducing the effects of abiotic filters on macroinvertebrate assemblage recovery. Furthermore, biological assessment prior to restoration supports a strategy primarily focused on improving the existing macroinvertebrate community in the current context of the system, thereby reducing costs associated with active channel restoration. Monitoring future biological recovery and determining the contribution of changing assemblages to specific ecological processes would provide a critical underpinning for adaptive management and ecologically-effective restoration.  相似文献   
2.
Recently, our attention has focused on the low level detection of many antibiotics, pharmaceuticals, and other organic chemicals in water resources. The limited studies available suggest that urban or rural streams receiving wastewater effluent are more susceptible to contamination. The purpose of this study was to evaluate the occurrence of antibiotics, pharmaceuticals, and other organic chemicals at 18 sites on seven selected streams in Arkansas, USA, during March, April, and August 2004. Water samples were collected upstream and downstream from the influence of effluent discharges in northwestern Arkansas and at one site on a relatively undeveloped stream in north-central Arkansas. At least one antibiotic, pharmaceutical, or other organic chemical was detected at all sites, except at Spavinaw Creek near Mayesville, Arkansas. The greatest number of detections was observed at Mud Creek downstream from an effluent discharge, including 31 pharmaceuticals and other organic chemicals. The detection of these chemicals occurred in higher frequency at sites downstream from effluent discharges compared to those sites upstream from effluent discharges; total chemical concentration was also greater downstream. Wastewater effluent discharge increased the concentrations of detergent metabolites, fire retardants, fragrances and flavors, and steroids in these streams. Antibiotics and associated degradation products were only found at two streams downstream from effluent discharges. Overall, 42 of the 108 chemicals targeted in this study were found in water samples from at least one site, and the most frequently detected organic chemicals included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene (AHTN).  相似文献   
3.
Trend analysis of stream constituent concentrations requires adjustment for exogenous variables like discharge because concentrations often have variable relations with flow. To remove the influence of flow on stream water quality data, an accurate characterization of the relationship between the constituent and streamflow is needed. One popular method, locally weighted regression (LOESS), provides an effective means for flow-adjusting concentrations. The LOESS fit can be tailored to the data via the smoothing parameter (f), so that the user can avoid overfitting or oversmoothing the data. However, it is a common practice to use a single f value when flow-adjusting water quality data for trend analysis. This study provides a robust, automated method for determining the optimal f value (fopt) for each dataset via an iterative K-fold cross-validation procedure that minimizes prediction error in LOESS. The method is developed by analyzing datasets of seven different constituents across 17 sites (119 datasets total) from a stream monitoring program in northwest Arkansas (USA). We recommend using 10 iterations of 10-fold cross-validation (10?×?10 CV) in order to select fopt when flow-adjusting water quality data with LOESS. The use of a default f value did not produce different trend interpretations for the data used here; however, the proposed approach may be helpful in other water quality studies which employ similar statistical fitting methods. Additionally, we provide an implementation of the method in the R statistical computing environment.  相似文献   
4.
Water quality regulation and litigation have elevated the awareness and need for quantifying water quality and source contributions in watersheds across the USA. In the present study, the regression method, which is typically applied to large (perennial) rivers, was evaluated in its ability to estimate constituent loads (NO(3)-N, total N, PO(4)-P, total P, sediment) on three small (ephemeral) watersheds with different land uses in Texas. Specifically, regression methodology was applied with daily flow data collected with bubbler stage recorders in hydraulic structures and with water quality data collected with four low-frequency sampling strategies: random, rise and fall, peak, and single stage. Estimated loads were compared with measured loads determined in 2001-2004 with an autosampler and high-frequency sampling strategies. Although annual rainfall and runoff volumes were relatively consistent within watersheds during the study period, measured annual nutrient and sediment concentrations and loads varied considerably for the cultivated and mixed watersheds but not for the pasture watershed. Likewise, estimated loads were much better for the pasture watershed than the cultivated and mixed landuse watersheds because of more consistent land management and vegetation type in the pasture watershed, which produced stronger correlations between constituent loads and mean daily flow rates. Load estimates for PO(4)-P were better than for other constituents possibly because PO(4)-P concentrations were less variable within storm events. Correlations between constituent concentrations and mean daily flow rate were poor and not significant for all watersheds, which is different than typically observed in large rivers. The regression method was quite variable in its ability to accurately estimate annual nutrient loads from the study watersheds; however, constituent load estimates were much more accurate for the combined 3-yr period. Thus, it is suggested that for small watersheds, regression-based annual load estimates should be used with caution, whereas long-term estimates can be much more accurate when multiple years of concentration data are available. The predictive ability of the regression method was similar for all of the low-frequency sampling strategies studied; therefore, single-stage or random strategies are recommended for low-frequency storm sampling on small watersheds because of their simplicity.  相似文献   
5.
A phosphorus (P) index for pastures was developed to write nutrient management plans that determine how much P can be applied to a given field. The objectives of this study were to (i) evaluate and compare the P index for pastures, particularly the P source component, and an environmental threshold soil test P level by conducting rainfall simulations on contrasting soils under various management scenarios; and (ii) evaluate the P index for pastures on field-scale watersheds. Poultry litter was applied to 12 small plots on each of six farms based on either an environmental threshold soil test P level or on the P index for pastures, and P runoff was evaluated using rainfall simulators. The P index was also evaluated from two small (0.405 ha) watersheds that had been fertilized annually with poultry litter since 1995. Results from the small plot study showed that soil test P alone was a poor predictor of P concentrations in runoff water following poultry litter applications. The relationship between P in runoff and the amount of soluble P applied was highly significant. Furthermore, P concentrations in runoff from plots with and without litter applications were significantly correlated to P index values. Studies on pastures receiving natural rainfall and annual poultry litter applications indicated that the P index for pastures predicted P loss accurately without calibration (y = 1.16x - 0.23, r(2) = 0.83). These data indicate that the P index for pastures can accurately assess the risk of P loss from fields receiving poultry litter applications in Arkansas and provide a more realistic risk assessment than threshold soil test P levels.  相似文献   
6.
Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.  相似文献   
7.
Detecting water quality improvements following watershed management changes is complicated by flow-dependent concentrations and nonlinear or threshold responses that are difficult to detect with traditional statistical techniques. In this study, we evaluated the long-term trends (1997-2009) in total P (TP) concentrations in the Illinois River of Oklahoma, and some of its major tributaries, using flow-adjusted TP concentrations and regression tree analysis to identify specific calendar dates in which change points in P trends may have occurred. Phosphorus concentrations at all locations were strongly correlated with stream flow. Flow-adjusted TP concentrations increased at all study locations in the late 1990s, but this trend was related to a change in monitoring practices where storm flow samples were specifically targeted after 1998. Flow-adjusted TP concentrations decreased in the two Illinois River sites after 2003. This change coincided with a significant decrease in effluent TP concentrations originating with one of the largest municipal wastewater treatment facilities in the basin. Conversely, flow-adjusted TP concentrations in one tributary increased, but this stream received treated effluent from a wastewater facility where effluent TP did not decrease significantly over the study period. Results of this study demonstrate how long-term trends in stream TP concentrations are difficult to quantify without consistent long-term monitoring strategies and how flow adjustment is likely mandatory for examining these trends. Furthermore, the study demonstrates how detecting changes in long-term water quality data sets requires statistical methods capable of identifying change point and nonlinear responses.  相似文献   
8.
Phosphorus (P) is a limiting nutrient in freshwater systems and when present in runoff from agricultural lands or urban centers may contribute to excessive periphyton growth. In this study, we examined the link between soil erosion and delivery of eroded soil to streams during flow events, and the impact of that freshly deposited soil on dissolved reactive P (DRP) concentrations and periphyton growth under baseflow conditions when the risk of stream eutrophication is greatest. A microcosm experiment was designed to simulate the release of P from soil which had been amended with different amounts of P fertilizer to overlying water during baseflow conditions. Unglazed tiles, inoculated for five days in a second order stream, were incubated for seven days in microcosms containing soil with eight levels of soil Mehlich‐3 plant available phosphorus (M3P) ranging from 20 to 679 mg/kg M3P. Microcosm DRP was monitored. Following incubation tiles were scraped and the periphyton analyzed for chlorophyll a. Microcosm DRP concentrations increased with increasing soil M3P and equilibrium phosphorus concentration (EPC0). Relationships between M3P, EPC0, and DRP were nonlinear and increases in soil M3P and/or DRP had a greater impact on biomass accumulation when these parameters were above threshold values of 30 mg/kg M3P and 0.125 mg/L DRP. Significantly, this ecological threshold corresponds to the agronomic thresholds above which increased soil M3P does not increase plant response.  相似文献   
9.
All Australian coal for export is washed — that is, the low-grade high-ash material is separated out and disposed of at the washery site. The coarse rejects are generally placed in embankments and the tailings are pumped into settling ponds. These methods of waste disposal can create environmental problems. In addition, they represent a significant energy loss, because about one-third of the waste material is combustible and is thus a potentially valuable source of energy. Laboratory studies at the CSIRO Division of Fossil Fuels at North Ryde, New South Wales, have shown that energy can be successfully recovered from washery wastes by the process of fluidized-bed combustion. A pilot fluidized-bed combustor, with a capacity of 2 tonnes/hour, is undergoing prolonged trial at the Clutha washery near Camden, New South Wales, in a joint project between the Joint Coal Board and CSIRO. The results from the pilot plant tests have provided the basis for a conceptual design and feasibility study for a full-scale tailings treatment plant. This study has indicated that fluidized-bed combustion:
  1. offers an environmentally attractive and economically competitive alternative to the disposal of tailings in settling ponds, and
  2. can be used to generate large quantities of energy from the wastes, reducing the energy lost in coal washing from around 16% to 6% of the coal mined.
  相似文献   
10.
Stream sediments play a large role in the transport and fate of soluble reactive phosphorus (SRP) in stream ecosystems, and equilibrium P concentrations (EPC 0) of benthic sediments at which P is neither adsorbed nor desorbed are often related to stream water SRP concentrations. This study evaluated (i) the variation among water chemistry and sediment-P interactions among streams draining catchments that varied in the land use; (ii) the relations between SRP concentration, sediment EPC 0, and other measured abiotic factors (e.g., particle size distribution, slope of linear sorption isotherms, etc.) in the stream sediments; and (iii) the use of the traditional Mehlich-3 (M3) soil extraction on stream sediments to elucidate other abiotic factors (e.g, M3P, P saturation ratio, etc.) related to SRP concentration in stream sediments. Stream water and sediments were sampled at 22 selected Ozark streams in northwest Arkansas during fall 2003 and spring 2004. Nitrate-N concentrations in the water column (r = 0.69) and modified P saturation ratios (PSR mod) ) of the benthic sediments (r = 0.79) at the selected streams increased with an increase in percent pasture in the catchments, whereas SRP concentration (r = -0.56) and Mehlich-3-extractable P (M3P) content (r = -0.47) decreased with an increase in the percent forested area. Soluble reactive P concentrations in the stream water were positively correlated to sediment EPC 0 (r = 0.51), although sediment EPC(0) was generally greater than SRP. The M3 soil extraction was useful in identifying abiotic factors related to SRP concentrations in the selected streams, in particular SRP concentrations were positively correlated to M3P contents (r = 0.50) and PSR mod (r = 0.71) of the benthic sediments. Thus, M3P and EPC 0 estimates from stream sediments may be valuable yet simple indicators of whether benthic sediments act as sinks or sources of P in fluvial systems, as well as estimating changes in stream SRP concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号