首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
环保管理   1篇
污染及防治   3篇
  2006年   1篇
  2000年   2篇
  1997年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Two synthetic superabsorbent crosslinked acrylic polymers were mineralized by the white-rot fungusPhanerochaete chrysosporium. The amount of polymer converted to CO2 increased as the amount of polymer added to the cultures increased. In the presence of sufficiently large amounts of the superabsorbents, such that all of the culture fluid was absorbed and a gelatinous matrix was formed, the fungus still grew and mineralization was observed. Neither the polymers, nor their degradation products were toxic to the fungus. While the rates of mineralization were low, all of the polymers incubated in the liquid fungal cultures were completely depolymerized to water soluble products within 15–18 days. The depolymerization of the polymers was observed only in nitrogen limited cultures of the fungus which secrete the lignin degradation system, however, the water soluble products of depolymerization were mineralized in both nutrient limited and sufficient cultures of the fungus. The rate of mineralization of the depolymerized metabolites was more than two times greater in nutrient sufficient cultures. Following longer incubation periods, most (> 80 %) of the radioactivity was recovered in the fungal mycelial mat suggesting that carbon of the polymer had been converted to fungal metabolites.  相似文献   
2.
When Phanerochaete chrysosporium was cultured using conditions which promote the expression of cellobiose dehydrogenase (CDH), but not the ligninolytic peroxidases, the fungus effectively solubilized and mineralized an insoluble, crosslinked polyacrylate and an insoluble polyacrylate/polyacrylamide copolymer. Addition of iron to the cultures increased CDH activity in the cultures and the rate and extent of solubilization and mineralization of both polymers. Solubilization of both polymers was observed when incubated with purified CDH, ferric iron and hydrogen peroxide.  相似文献   
3.
Biodegradation of two superabsorbent polymers, a crosslinked, insoluble polyacrylate and an insoluble polyacrylate/ polyacrylamide copolymer, in soil by the white-rot fungus, Phanerochaete chrysosporium was investigated. The polymers were both solubilized and mineralized by the fungus but solubilization and mineralization of the copolymer was much more rapid than of the polyacrylate. Soil microbes poorly solublized the polymers and were unable to mineralize either intact polymer. However, soil microbes cooperated with the fungus during polymer degradation in soil, with the fungus solubilizing the polymers and the soil microbes stimulating mineralization. Further, soil microbes were able to significantly mineralize both polymers after solubilization by P. chrysosporium grown under conditions that produced fungal peroxidases or cellobiose dehydrogenase, or after solubilization by photochemically generated Fenton reagent. The results suggest that biodegradation of these polymers in soil is best under conditions that maximize solubilization.  相似文献   
4.
Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号