首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
环保管理   1篇
污染及防治   5篇
评价与监测   1篇
社会与环境   1篇
  2013年   2篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. This lake's shallow depth makes It susceptible to atmospheric influence. A series of experiments were carried out in order to investigate the effect of atmospheric nitrogen deposition into the lake. Nitrogen was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. In this paper, results are presented, of the experimental measurement of coarse and fine atmospheric concentrations of atmospheric particulate nitrogen adjacent to and in the watershed of the Reedy River (downtown Greenville) and Lake Greenwood. Experiments were carried out during four 24-hr periods in January 2001 and again during four 24-hr periods in March 2001. Results are presented here for atmospheric particulate nitrogen as well as other constituents of the airborne aerosol. Mass concentrations of PM2.5 averaged 14.0 and 21 microg/m3 for Lake Greenwood and downtown Greenville, respectively. Mass concentrations of total suspended particulates (TSP) averaged 22.6 and 38.5 microg/m3 for Lake Greenwood and downtown Greenville, respectively. This ambient aerosol concentration was apportioned to its chemical constituents, and the greatest contributors to PM2.5 mass were organics (45 and 42% for downtown Greenville and the lake, respectively) and sulfate (14.1 and 19.7% for downtown Greenville and the lake, respectively). The information gathered here, despite its episodic nature, is important not only in determining atmospheric nitrogen but also in documenting the composition of aerosol in South Carolina, which so far has not been studied. In a companion paper, results for gaseous pollutants as well as thermodynamic modeling of the aerosol and nitrogen flux determinations are presented.  相似文献   
2.
The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4+; 20%), coarse nitrate (NO3-; 16%), fine NO3 (5%), and coarse NH4+ (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4+ concentrations.  相似文献   
3.
Under the Clean Development Mechanism (CDM) of the Kyoto Protocol, industrialised countries may finance greenhouse gases mitigation projects in developing countries. The Kyoto Protocol explicitly requires that the CDM shall assist developing countries to achieve sustainable development. However, a clear definition of sustainability for CDM projects is still debatable. MATA-CDM (Multi-Attributive Assessment of CDM Projects) is an approach that facilitates a quantitative assessment of potential projects regarding their contribution to sustainable development. This paper presents applications of MATA-CDM in two different countries. In South Africa, the application was done mainly for academic and demonstrative purposes, whereas in Uruguay it was implemented together with the responsible Designated National Authority (DNA). The work in both countries included the selection of sustainability criteria and measurable indicators. Experts weighted the criteria using personal interviews and a multi-stakeholder workshop. This method was applied to three potential CDM projects in South Africa and one in Uruguay. Results show that under the conditions of this study, the MATA-CDM approach yet fails to yield a perfect quantitative overall sustainability assessment of CDM projects but that several findings could be useful to further develop the approach with the aim to translate the vague term sustainable development to a mainstream project level. Valuable experience was in particular collected with different stakeholder processes to perform criteria weighting.  相似文献   
4.
Pesticide volatilization models are typically based on equilibrium partitioning of the chemical into solid, liquid, and gaseous phases in the soil environment. In turf systems direct vaporization from vegetation surfaces is a more likely source, and it is difficult to apply equilibrium methods to plant material due to the uncertainties of solid-liquid-gas partitioning. An alternative approach is to assume that pesticide volatilization is governed by the same processes that affect water evaporation. A model was developed in which evapotranspiration values, as determined by the Penman equation, were adjusted to chemical vaporization using ratios of water and chemical saturated vapor pressures and latent heats of vaporization. The model also assumes first-order degradation of pesticide on turf vegetation over time. The model was tested by comparisons of predictions with measurements of volatilization for eight pesticides measured during 3 to 7 d in 11 field experiments. Measured volatilization fluxes ranged from 0.1 to 22% of applied chemical. Pesticides were divided into two groups based on saturated vapor pressures and organic C partition coefficients. One pesticide was selected from each group to calibrate the model's volatilization constant for the group, and the remaining pesticides were used for model testing. Testing results indicated that the model provides relatively conservative estimates of pesticide volatilization. Predicted mean losses exceeded observations by 20%, and the model explained 67% of the observed variation in volatilization fluxes. The model was most accurate for those chemicals that exhibited the largest volatilization losses.  相似文献   
5.
6.
Macroeconomic models predict that the global primary energy demand will increase by a factor of 2–4 by the year 2050. In contrast, climate analyses made by the IPCC claim that CO2 emissions in 2050 should not exceed the values of 1990 or even be 20% lower. By 2100 emissions should be reduced to one third of the present value. The common wisdom to deal with these opposing trends is the concept of de-carbonization, i.e., the continuous decrease of the carbon emission per unit energy utilization. De-carbonization rates needed to compensate for the growing demand while keeping the CO2-emissions constant should at least be 2% per year compared to actual values of 0.3%. The potential of different de-carbonization rate measures is analyzed. It is argued that the goal can only be met if per capita energy utilization in the industrialized countries is significantly reduced from their typical level of 5000–10 000 W. As a realistic target we suggest 2000 Watt per capita, the present global average. This would leave expansion capacity for the developing countries which presently have per capita demand between 300 and 1000 W. Based on the example of Switzerland it is shown that the two key issues to attain this goal are the quality of buildings and the demand for mobility. It is concluded that the conversion of the present energy system into a 2000 W system is neither limited by technology nor by finances but by the acceptance of a new life style in which energy is used more efficiently and more intelligently than today. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
7.
Abstract

The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. A series of experiments were carried out to investigate atmospheric nitrogen (N) input into the lake. N was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms. Episodic atmospheric measurements during January and March 2001 have shown that the dry N flux onto the lake ranged from 0.9 to 17.4 kg N/ha-yr, and on average is caused by nitric acid (HNO3; 31%), followed by nitrogen dioxide (NO2; 23%), fine ammonium (NH4 +; 20%), coarse nitrate (NO3 ?; 16%), fine NO3 + (5%), and coarse NH4 + (5%). Similar measurements in Greenville, SC (the upper watershed of the Reedy River), showed that the dry N deposition flux there ranged from 1.4 to 9.7 kg N/ha-yr and was mostly caused by gaseous deposition (40% NO2 and 40% HNO3). The magnitude of this dry N deposition flux is comparable to wet N flux as well as other point sources in the area. Thermodynamic modeling showed low concentrations of ammonia, relative to the particulate NH4 + concentrations.  相似文献   
8.
Abstract

The Reedy River branch of Lake Greenwood, SC, has repeatedly experienced summertime algal blooms, upsetting the natural system. This lake’s shallow depth makes it susceptible to atmospheric influence. A series of experiments were carried out in order to investigate the effect of atmospheric nitrogen deposition into the lake. Nitrogen was examined because of the insignificant phosphorus dry atmospheric flux and the unique nutrient demands of the dominant algae (Pithophora oedogonia) contributing to the blooms.

In this paper, results are presented of the experimental measurement of coarse and fine atmospheric concentrations of atmospheric particulate nitrogen adjacent to and in the watershed of the Reedy River (downtown Greenville) and Lake Greenwood. Experiments were carried out during four 24-hr periods in January 2001 and again during four 24-hr periods in March 2001. Results are presented here for atmospheric particulate nitrogen as well as other constituents of the airborne aerosol. Mass concentrations of PM2.5 averaged 14.0 and 21 µg/m3 for Lake Greenwood and downtown Greenville, respectively. Mass concentrations of total suspended particulates (TSP) averaged 22.6 and 38.5 μg/m3 for Lake Greenwood and downtown Greenville, respectively. This ambient aerosol concentration was apportioned to its chemical constituents, and the greatest contributors to PM2.5 mass were organics (45 and 42% for downtown Greenville and the lake, respectively) and sulfate (14.1 and 19.7% for downtown Greenville and the lake, respectively).

The information gathered here, despite its episodic nature, is important not only in determining atmospheric nitrogen but also in documenting the composition of aerosol in South Carolina, which so far has not been studied. In a companion paper, results for gaseous pollutants as well as thermodynamic modeling of the aerosol and nitrogen flux determinations are presented.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号