首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2474篇
  免费   24篇
  国内免费   97篇
安全科学   111篇
废物处理   217篇
环保管理   345篇
综合类   319篇
基础理论   453篇
环境理论   1篇
污染及防治   841篇
评价与监测   210篇
社会与环境   83篇
灾害及防治   15篇
  2023年   12篇
  2022年   36篇
  2021年   43篇
  2020年   16篇
  2019年   47篇
  2018年   76篇
  2017年   63篇
  2016年   83篇
  2015年   57篇
  2014年   79篇
  2013年   202篇
  2012年   135篇
  2011年   156篇
  2010年   100篇
  2009年   139篇
  2008年   149篇
  2007年   154篇
  2006年   138篇
  2005年   124篇
  2004年   116篇
  2003年   108篇
  2002年   95篇
  2001年   65篇
  2000年   42篇
  1999年   27篇
  1998年   23篇
  1997年   25篇
  1996年   18篇
  1995年   21篇
  1994年   22篇
  1993年   20篇
  1992年   11篇
  1991年   22篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1986年   10篇
  1985年   9篇
  1984年   10篇
  1983年   8篇
  1982年   13篇
  1981年   14篇
  1980年   12篇
  1978年   6篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   5篇
排序方式: 共有2595条查询结果,搜索用时 15 毫秒
1.

Landslide poses severe threats to the natural landscape of the Lesser Himalayas and the lives and economy of the communities residing in that mountainous topography. This study aims to investigate whether the landscape change has any impact on landslide occurrences in the Kalsi-Chakrata road corridor by detailed investigation through correlation of the landslide susceptibility zones and the landscape change, and finally to demarcate the hotspot villages where influence of landscape on landslide occurrence may be more in future. The rational of this work is to delineate the areas with higher landslide susceptibility using the ensemble model of GIS-based multi-criteria decision making through fuzzy landslide numerical risk factor model along the Kalsi-Chakrata road corridor of Uttarakhand where no previous detailed investigation was carried out applying any contemporary statistical techniques. The approach includes the correlation of the landslide conditioning factors in the study area with the changes in land use and land cover (LULC) over the past decade to understand whether frequent landslides have any link with the physical and hydro-meteorological or, infrastructure, and socioeconomic activities. It was performed through LULC change detection and landslide susceptibility mapping (LSM), and spatial overlay analysis to establish statistical correlation between the said parameters. The LULC change detection was performed using the object-oriented classification of satellite images acquired in 2010 and 2019. The inventory of the past landslides was formed by visual interpretation of high-resolution satellite images supported by an intensive field survey of each landslide area. To assess the landslide susceptibility zones for 2010 and 2019 scenarios, the geo-environmental or conditioning factors such as slope, rainfall, lithology, normalized differential vegetation index (NDVI), proximity to road and land use and land cover (LULC) were considered, and the fuzzy LNRF technique was applied. The results indicated that the LULC in the study area was primarily transformed from forest cover and sparse vegetation to open areas and arable land, which is increased by 6.7% in a decade. The increase in built-up areas and agricultural land by 2.3% indicates increasing human interference that is continuously transforming the natural landscape. The landslide susceptibility map of 2019 shows that about 25% of the total area falls under high and very high susceptibility classes. The result shows that 80% of the high landslide susceptible class is contained by LULC classes of open areas, scrubland, and sparse vegetation, which point out the profound impact of landscape change that aggravate landslide occurrence in that area. The result acclaims that specific LULC classes, such as open areas, barren-rocky lands, are more prone to landslides in this Lesser Himalayan road corridor, and the LULC-LSM correlation can be instrumental for landslide probability assessment concerning the changing landscape. The fuzzy LNRF model applied has 89.6% prediction accuracy at 95% confidence level which is highly satisfactory. The present study of the connection of LULC change with the landslide probability and identification of the most fragile landscape at the village level has been instrumental in delineation of landslide susceptible areas, and such studies may help the decision-makers adopt appropriate mitigation measures in those villages where the landscape changes have mainly resulted in increased landslide occurrences and formulate strategic plans to promote ecologically sustainable development of the mountainous communities in India's Lesser Himalayas.

  相似文献   
2.
Journal of Material Cycles and Waste Management - Owing to various advantages of artificial marble compared to natural marble, its application has been rising exponentially, which has resulted in...  相似文献   
3.
4.
5.
6.
7.
8.
A prenatal diagnosis of partial monosomy 18p(18p11.2→pter) and trisomy 21q(21q22.3→qter) in a fetus with alobar holoprosencephaly (HPE) and premaxillary agenesis (PMA) but without the classical Down syndrome phenotype is reported. A 27-year-old primigravida woman was referred for genetic counselling at 21 weeks' gestation due to sonographic findings of craniofacial abnormalities. Level II ultrasonograms manifested alobar HPE and median orofacial cleft. Cytogenetic analysis and fluorescence in situ hybridization (FISH) on cells obtained from amniocentesis revealed partial monosomy 18p and a cryptic duplication of 21q,46,XY,der(18)t(18;21)(p11.2;q22.3), resulting from a maternal t(18;21) reciprocal translocation. The breakpoints were ascertained by molecular genetic analysis. The pregnancy was terminated. Autopsy showed alobar HPE with PMA, pituitary dysplasia, clinodactyly and classical 18p deletion phenotype but without the presence of major typical phenotypic features of Down syndrome. The phenotype of this antenatally diagnosed case is compared with those observed in six previously reported cases with monosomy 18p due to 18;21 translocation. The present study is the first report of concomitant deletion of HPE critical region of chromosome 18p11.3 and cryptic duplication of a small segment of distal chromosome 21q22.3 outside Down syndrome critical region. The present study shows that cytogenetic analyses are important in detecting chromosomal aberrations in pregnancies with prenatally detected craniofacial abnormalities, and adjunctive molecular investigations are useful in elucidating the genetic pathogenesis of dysmorphism. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
9.
10.
Diadromous fish often enter freshwater directly from seawater via fish ladders or channels built in estuarine dams. The oxygen consumption rates (OCR) of glass eel, Anguilla japonica, were determined using an automatic intermittent flow respirometer under various salinity and temperature regimes to physiologically explain this direct movement. The endogenous rhythm of the OCR in wild glass eels, freshly collected from estuaries, was nearly synchronous with the tidal pattern at the estuarine collection site. When the salinity was changed from 20 psu (12°C) at a constant temperature to that of freshwater, the OCR of the glass eels decreased by 21.6±7.0% (mean ± SD) (P<0.05), showing a dampened rhythm for about 48 h. After this period of impediment, the glass eels resumed normal metabolic activity. Direct migration from seawater to freshwater under constant temperature would result in a severe physiological stress for these glass eels for about two days. When the glass eels were exposed to a cyclic change in water temperature of 2°C 26 h−1, as they encounter in estuaries, and then were introduced to freshwater abruptly, the OCR rhythm corresponded to the cyclic changes in water temperature after exposure to freshwater. Under these conditions, the mean OCR of the glass eels had a small difference before and after exposure to freshwater. These data explained how glass eels can directly move from sea water into the freshwater without any apparent metabolic stress in the estuaries showing cyclic change in water temperature (Δt=2°C).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号